The aim of the study was to evaluate how the association of solvents (tetrahydrofuran [THF], dimethyl sulfoxide [DMSO], ethanol [ET] or acetone [ACT]) with experimental dental adhesives affects selected properties of experimental dental adhesives and dentin bond durability. Six adhesive combinations were prepared containing: 30 % ET, 30 % ACT, 30 % THF, 28 % ET + 2 % DMSO (ET+DMSO), 15 % ethanol + 15 % THF (ET+THF), or 28 % THF + 2 % DMSO (THF+DMSO). Thirty-six molars (n = 6) were cut to expose the coronary dentin, and were randomly divided according to the adhesives. They were restored, and then cut into resindentin sticks (1 mm²), and stored in distilled water for 24 h or 6 months, until conducting the microtensile bond strength and nanoleakage tests. Other experiments performed with adhesives included viscosity assessment using a rheometer, and degree of conversion using Fourier-transform infrared spectroscopy (FTIR). The data were analyzed statistically using two-way ANOVA and Tukey's test (p < 0.05). The adhesive formulated exclusively with THF showed the highest viscosity, followed by ET+THF, which obtained the highest degree of conversion compared to ET, and THF alone. ET+DMSO obtained the highest 24-h and aged bond strengths (p < 0.05). ET+THF increased the nanoleakage slightly after 6 months, but attained the only gap-free adhesive interface among all the groups. The combination of alternative solvents, particularly THF, with conventional ones (ET) has improved chemical properties, and the dentin bonding of experimental simplified adhesives.

Download full-text PDF

Source
http://dx.doi.org/10.1590/1807-3107bor-2022.vol36.0093DOI Listing

Publication Analysis

Top Keywords

experimental dental
12
dental adhesives
12
association solvents
8
selected properties
8
properties experimental
8
thf dmso
8
degree conversion
8
adhesives
6
thf
6
solvents improves
4

Similar Publications

Background: With recent increases in demand for the esthetic aspects of orthodontic treatments, the use of ceramic brackets has gained more popularity. Dental demineralization is a frequent, undesired effect of microbial biofilm adhesion to orthodontic appliances. The crystalline structure of ceramics results in different material properties, and its possible effect on microbial adhesion was investigated in this study.

View Article and Find Full Text PDF

Background: Recurrent caries were attributed to the lack of antibacterial properties of the dental materials. Silver nanoparticles (AgNPs) and calcium fluoride nanoparticles (CaF2NPs) are broad-spectrum antibacterial agents. The object of the study was to investigate the antibacterial properties of composite-incorporated AgNPs and CaF2NPs on .

View Article and Find Full Text PDF

Background and objective Applying different hygiene tools for implant maintenance alters surface configurations, impacting bacterial adhesion on titanium implant surfaces and potentially leading to peri-implant diseases. This study aimed to assess the alterations in surface topography of titanium implant fixtures after utilizing hygiene instruments such as airflow; erbium, chromium-doped: yttrium, scandium, gallium, and garnet (Er, Cr: YSGG) laser; and titanium brush, under scanning electron microscope (SEM) observation. Materials and methods We employed an experimental laboratory study design for this research, involving 20 MegaGen ST titanium implant fixtures (MegaGen Implant Co.

View Article and Find Full Text PDF

Dysphagia is a frequent and life-threatening complication of multiple sclerosis (MS). Swallowing disturbances may be present at all stages of MS, although their prevalence increases with age, with disease duration, and in progressive phenotypes. The pathophysiology of dysphagia in MS is likely due to a combination of factors, including the involvement of corticobulbar tracts, the cerebellum, and the brainstem.

View Article and Find Full Text PDF

Purpose: The study evaluated the influence of titanium discs, coated with polyacrylonitrile infused curcumin nanofibers on osteoblast activity.

Materials And Methods: The titanium discs were coated with polyacrylonitrile nanofibers infused with curcumin. MG-63 cell lines were utilized for cell culture to assess osteoblast morphology upon exposure of curcumin on titanium discs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!