Many biological phenomena such as cell proliferation and death are correlated with stress fields within cells. Stress fields are quantified using computational methods which rely on fundamental assumptions about local mechanical properties. Most existing methods such as Monolayer Stress Microscopy assume isotropic properties, yet experimental observations strongly suggest anisotropy. We first model anisotropy in circular cells analytically using Eshelby's inclusion method. Our solution reveals that uniform anisotropy cannot exist in cells due to the occurrence of substantial stress concentration in the central region. A more realistic non-uniform anisotropy model is then introduced based on experimental observations and implemented numerically which interestingly clears out stress concentration. Stresses within the entire aggregate also drastically change compared to the isotropic case, resulting in better agreement with observed biomarkers. We provide a physics-based mechanism to explain the low alignment of stress fibers in the center of cells, which might explain certain biological phenomena e.g., existence of disrupted rounded cells, and higher apoptosis rate at the center of circular aggregates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187583 | PMC |
http://dx.doi.org/10.1007/s10237-022-01595-0 | DOI Listing |
Int J Biol Macromol
December 2024
Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India. Electronic address:
Intrinsically Disordered Proteins (IDPs) and Intrinsically Disordered Regions (IDRs) are renowned for their dynamic structural characteristics and conformational adaptability, allowing them to assume diverse conformations in response to prevailing environmental conditions. This inherent flexibility facilitates their interactions with molecular targets, enabling them to engage in numerous cellular processes without any excessive energy consumption. This adaptability is instrumental in shaping cellular complexity and enhancing adaptability.
View Article and Find Full Text PDFBrain Res Bull
December 2024
Psychophysiology Laboratory, Wannan Medical College, Wuhu, Anhui 241002, China. Electronic address:
Post traumatic stress disorder (PTSD) is characterized by anxiety, excessive fear, distress, and weakness as symptoms of a psychiatric disorder. However, the mechanism associated with its symptoms such as anxiety-like behaviors is not well understood. It is aimed to investigate the underlying mechanisms of the medial septum (MS)-medial habenula (MHb) neural circuit modulating the anxiety-like behaviors of PTSD mice through in vivo fiber photometry recording, optogenetics, behavioral testing by open-field and elevated plus maze, fluorescent gold retrograde tracer technology, and viral tracer technology.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China. Electronic address:
Traditional tissue engineering strategies focus on geometrically static tissue scaffolds, lacking the dynamic capability found in native tissues. The emerging field of 4D bioprinting offers a promising method to address this challenge. However, the requirement for consistent exogenous supplementation of growth factors (GFs) during tissue maturation poses a significant obstacle for in vivo application of 4D bioprinted constructs.
View Article and Find Full Text PDFPLoS One
December 2024
São Paulo State University (Unesp), School of Sciences and Engineering, Tupã, São Paulo, Brasil.
Meteorological data acquired with precision, quality, and reliability are crucial in various agronomy fields, especially in studies related to reference evapotranspiration (ETo). ETo plays a fundamental role in the hydrological cycle, irrigation system planning and management, water demand modeling, water stress monitoring, water balance estimation, as well as in hydrological and environmental studies. However, temporal records often encounter issues such as missing measurements.
View Article and Find Full Text PDFEcol Lett
December 2024
Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
Animals are predicted to shrink and shape-shift as the climate warms, declining in size, while their appendages lengthen. Determining which types of species are undergoing these morphological changes, and why, is critical to understanding species responses to global change, including potential adaptation to climate warming. We examine body size and bill length changes in 25 shorebird species using extensive field data (> 200,000 observations) collected over 46 years (1975-2021) by community scientists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!