A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computational insights into missense mutations in HTT gene causing Huntington's disease and its interactome networks. | LitMetric

Background: Huntington's disease is a rare neurodegenerative illness of the central nervous system that is inherited in an autosomal dominant pattern. Mutant huntingtin protein is produced as a result of enlargement of CAG repeat in the N-terminal of the polyglutamine tract.

Aim Of The Study: Herein, we aim to investigate the mutations and their effects on the HTT gene and its genetic variants. Additionally, the protein-protein interaction of HTT with other proteins and receptor-ligand interaction with the three-dimensional structure of huntingtin protein were identified.

Methods: A comprehensive analysis of the HTT interactome and protein-ligand interaction has been carried out to provide a global picture of structure-function analysis of huntingtin protein. Mutations were analyzed and mutation verification tools were used to check the effect of mutation on protein function.

Results: The results showed, mutations in a single gene are not only responsible for causing a particular disease but may also cause other hereditary disorders as well. Moreover, the modification at the nucleotide level also cause the change in the specific amino acid which may disrupt the function of HTT and its interacting proteins contributing in disease pathogenesis. Furthermore, the interaction between MECP2 and BDNF lowers the rate of transcriptional activity. Molecular docking further confirmed the strong interaction between MECP2 and BDNF with highest affinity. Amino acid residues of the HTT protein, involved in the interaction with tetrabenazine were N912, Y890, G2385, and V2320. These findings proved, tetrabenazine as one of the potential therapeutic agent for treatment of Huntington's disease.

Conclusion: These results give further insights into the genetics of Huntington's disease for a better understanding of disease models which will be beneficial for the future therapeutic studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11845-022-03043-5DOI Listing

Publication Analysis

Top Keywords

huntington's disease
12
htt gene
8
amino acid
8
interaction mecp2
8
mecp2 bdnf
8
htt
6
disease
6
interaction
6
computational insights
4
insights missense
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!