The Journey of 1-Keto-1,2,3,4-Tetrahydrocarbazole Based Fluorophores: From Inception to Implementation.

J Fluoresc

Department of Chemistry, Government General Degree College, Singur, Singur, Hooghly, West Bengal, 712409, India.

Published: November 2022

AI Article Synopsis

  • Carbazole is notable for its various biological activities, making its derivatives a key focus in research.
  • 1-keto-1,2,3,4-tetrahydrocarbazoles serve as crucial synthetic intermediates for creating these derivatives.
  • This article provides an in-depth review of the synthesis and photophysical characteristics of different fluorophores derived from the 1-keto-1,2,3,4-tetrahydrocarbazole structure.

Article Abstract

Carbazole is a unique template associated with several biological activities. It is due to the diverse and versatile biological properties of carbazole derivatives that they are of immense interest to the research community. 1-keto-1,2,3,4-tetrahydrocarbazoles are important synthetic intermediates to obtain carbazole derivatives. Several members of this family emit fluorescence on photoexcitation. In the context of biochemical and biophysical research, designing and characterising small molecule environment sensitive fluorophores is extremely significant. This article aims to be a state of the art review with synthetic and photophysical details of a variety of fluorophores based on 1-keto-1,2,3,4-tetrahydrocarbazole skeleton.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-022-03004-2DOI Listing

Publication Analysis

Top Keywords

carbazole derivatives
8
journey 1-keto-1234-tetrahydrocarbazole
4
1-keto-1234-tetrahydrocarbazole based
4
based fluorophores
4
fluorophores inception
4
inception implementation
4
implementation carbazole
4
carbazole unique
4
unique template
4
template associated
4

Similar Publications

Coal tar-related products as a source of polycyclic aromatic compounds (PACs) are particularly concerning due to high PAC concentrations and inadequate source management. Benzo[b]carbazole, a benzocarbazole isomer exclusively found in coal tar-derived products, acts as an ideal marker to distinguish coal tar sources from others, enabling more robust quantification of coal tar contributions to PACs. To evaluate the historical and recent contributions of coal tar-related sources to the levels of PACs in Lake Ontario and associated ecological risk, we analyzed 31 PACs and 3 BCBz isomers in surface sediments and a sediment core.

View Article and Find Full Text PDF

fungi are widespread pathogens of food crops, primarily associated with the formation of mycotoxins. Therefore, effective mitigation strategies for these toxicogenic microorganisms are required. In this study, the potential of pulsed electric field (PEF) as an advanced technology of increasing use in the food processing industry was investigated to minimize the viability of pathogens and to characterize the PEF-induced changes at the metabolomic level.

View Article and Find Full Text PDF

The development of hole-collecting materials is indispensable to improving the performance of perovskite solar cells (PSCs). To date, several anchorable molecules have been reported as effective hole-collecting monolayer (HCM) materials for p-i-n PSCs. However, their structures are limited to well-known electron-donating skeletons, such as carbazole, triarylamine, etc.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates cell immune responses in a cell type-specific and ligand-dependent manner. In the central nervous system, astrocytic AhR plays important roles in regulating neuroinflammation by mediating responses to endogenous ligands generated from the inflammation-induced indoleamine 2,3-dioxygenase 1 (IDO1)/kynurenine (KYN) pathway. We previously demonstrated that reduction of AhR expression decreases lipopolysaccharide (LPS)-induced pro-inflammatory responses in microglia.

View Article and Find Full Text PDF

Lanthanide(III) complexes with two-photon absorbing antennas are attractive for microscopy imaging of live cells because they can be excited in the NIR. We describe the synthesis and luminescence and imaging properties of two Eu complexes, and , with (-carbazolyl)-aryl-alkynyl-picolinamide and (-carbazolyl)-aryl-picolinamide antennas, respectively, conjugated to the TAT cell-penetrating peptides. Contrary to what was previously observed with related Eu complexes with carbazole-based antennas in a mixture of water and organic solvents, these two complexes show very low emission quantum yield (Φ < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!