We have investigated the interaction of VAI RNA with the interferon-induced, double-stranded (ds) RNA-activated protein kinase, P68, both of which regulate protein synthesis in adenovirus-infected cells. Previous work has shown that during infection by the VAI RNA-negative mutant, dl331, both viral and cellular protein synthesis are inhibited due to phosphorylation of the alpha-subunit of the eukaryotic initiation factor, eIF-2, by the P68 protein kinase. Utilizing monoclonal antibodies specific for P68, we demonstrated that the physical levels of P68 in dl331-infected, wild-type Ad2-infected and uninfected cells were all comparable suggesting that the elevated kinase activity detected during mutant infection was not due to increased P68 synthesis. To examine the basis of the increased activity of P68, the protein kinase was purified from infected-cell extracts using the monoclonal antibody. We found that P68 was heavily autophosphorylated during dl331 infection but not during wild-type or mock infection. The extent of autophosphorylation correlated with elevated P68 activity and the loss of the dsRNA requirements to phosphorylate the exogenous substrates, eIF-1 alpha and histones. We also analyzed VAI RNA function in vitro and present evidence that purified VAI RNA can block the autophosphorylation of P68 in the ribosomal salt wash fraction of interferon-treated cells. Finally we suggest VAI RNA functions through a direct interaction with the P68 protein kinase, since we demonstrated that VAI RNA forms a complex with P68 both in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC553452 | PMC |
http://dx.doi.org/10.1002/j.1460-2075.1987.tb04809.x | DOI Listing |
Biochem Biophys Res Commun
July 2024
Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan. Electronic address:
The RNA-binding protein PKR serves as a crucial antiviral innate immune factor that globally suppresses translation by sensing viral double-stranded RNA (dsRNA) and by phosphorylating the translation initiation factor eIF2α. Recent findings have unveiled that single-stranded RNAs (ssRNAs), including in vitro transcribed (IVT) mRNA, can also bind to and activate PKR. However, the precise mechanism underlying PKR activation by ssRNAs, remains incompletely understood.
View Article and Find Full Text PDFJ Gene Med
December 2023
R&D Center, Rznomics Inc., Seongnam, Republic of Korea.
Background: Adenovirus expresses two non-coding virus-associated (VA) RNAs: VA I RNA and VA II RNA. Adenovirus-expressed VA RNAs interfere with the microRNA (miRNA) pathway by competing with precursor miRNAs. The processing pattern of primary miRNA (pri-miRNA) and factors to affect its processing are not exactly known when using adenovirus for the delivery of pri-miRNA.
View Article and Find Full Text PDFJ Chem Neuroanat
November 2021
Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, China. Electronic address:
The pathogenesis of Perioperative neurocognitive disorders (PND) is a synergistic effect of many factors. Up to now, the exact mechanism remains unclear. The dopamine pathway in the brain is one of the paths involved in the means of cognitive function.
View Article and Find Full Text PDFProtein kinase R (PKR) is a key antiviral component of the innate immune pathway and is activated by viral double-stranded RNAs (dsRNAs). Adenovirus-associated RNA 1 (VAI) is an abundant, noncoding viral RNA that functions as a decoy by binding PKR but not inducing activation, thereby inhibiting the antiviral response. In VAI, coaxial stacking produces an extended helix that mediates high-affinity PKR binding but is too short to result in activation.
View Article and Find Full Text PDFFront Immunol
November 2020
Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
Virus infected immune cells can rapidly respond to the invader by activating the inflammasome and as a consequence release proinflammatory cytokines and eventually die by pyroptosis. In human adenovirus-5 (Ad5) infected THP-1 cells, inhibition of NLRP3 inflammasome activation was demonstrated by a decreased secretion of HMGB1 and matured forms of caspase-1and IL-1ß. An Ad5 mutant virus defective in expression of the non-coding VA RNAI failed to inhibit the NLRP3 inflammasome and in addition displayed formation of ASC specks and increased cell lysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!