Herein, a perspective on the recent understanding of weak n → π* interaction obtained using different experimental and theoretical approaches is presented. This interaction is purely an orbital interaction that involves the delocalization of the lone pair electrons (n) on nitrogen, oxygen, and sulfur to the π* orbitals of CO, CN, and aromatic rings. The n → π* interaction has been found to profoundly influence the stabilization of peptides, proteins, drugs, and various small molecules. Although the functional properties of this non-covalent interaction are still quite underestimated, there are recent demonstrations of applying this interaction to the regulation of synthetic chemistry, catalysis, and molecular recognition. However, the identification and quantification of the n → π* interaction remain a demanding task as this interaction is quite weak and based on the electron delocalization between the two orbitals, while hyperconjugation interactions between neighboring atoms and the group involved in the n → π* interaction are simultaneously present. This review provides a comprehensive picture of understanding the n → π* interaction using different experimental approaches such as the X-ray diffraction technique, and electronic, NMR, microwave, and IR spectroscopy, in addition to quantum chemistry calculations. A detailed understanding of the n → π* interaction can help in modulating the strength of this interaction, which will be further helpful in designing efficient drugs, synthetic peptides, peptidomimetics,
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp02070j | DOI Listing |
Chem Biodivers
January 2025
Kunming Institute of Botany Chinese Academy of Sciences, Key laboratory of economic plants and biotechnology, 132# Lanhei Road, Heilongtan, Kunming, Yunnan, China, 650201, Kunming, CHINA.
Mesua ferrea L. is used in Ayurvedic and Thai medicine for treating various diseases, including diabetes. This study aimed to isolate and identify the bioactive constituents from M.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA.
The TGF-β family ligand Nodal is an essential regulator of embryonic development, orchestrating key processes such as germ layer specification and body axis formation through activation of SMAD2/3-mediated signaling. Significantly, this activation requires the co-receptor Cripto-1. However, despite their essential roles in embryogenesis, the molecular mechanism through which Cripto-1 enables Nodal to activate the SMAD2/3 pathway has remained elusive.
View Article and Find Full Text PDFOncologist
January 2025
Department of Medical Oncology, Princess Margaret Hospital, Toronto, ON M5G 2M9, Canada.
Background: Metastatic castration-resistant prostate cancer (mCRPC) has a poor prognosis, necessitating the investigation of novel treatments and targets. This study evaluated JNJ-70218902 (JNJ-902), a T-cell redirector targeting transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2) and cluster of differentiation 3, in mCRPC.
Patients And Methods: Patients who had measurable/evaluable mCRPC after at least one novel androgen receptor-targeted therapy or chemotherapy were eligible.
Cancer Cell
January 2025
Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Centre for Cancer Evolution, Bart's Cancer Institute, Queen Mary University London, London EC1M 6AU, UK. Electronic address:
Fewer than 50% of metastatic deficient mismatch repair (dMMR) colorectal cancer (CRC) patients respond to immune checkpoint inhibition (ICI). Identifying and expanding this patient population remains a pressing clinical need. Here, we report that an interferon-high immunophenotype locally enriched in cytotoxic lymphocytes and antigen-presenting macrophages is required for response.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
Myelin loss induces neural dysfunction and contributes to the pathophysiology of neurodegenerative diseases, injury conditions, and aging. Because remyelination is often incomplete, better understanding endogenous remyelination and developing remyelination therapies that restore neural function are clinical imperatives. Here, we use in vivo two-photon microscopy and electrophysiology to study the dynamics of endogenous and therapeutic-induced cortical remyelination and functional recovery after cuprizone-mediated demyelination in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!