Lightweight electromagnetic wave absorbent composites with FeO nanocrystals uniformly decorated on the surface of carbon spheres.

Nanoscale

Institute of Materials Physics and Chemistry, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China.

Published: July 2022

The application of electromagnetic waves has reached every aspect of human life, but the search for superior electromagnetic wave absorbent materials has been a constant quest of researchers. The application of heterogeneous structures has been favored by researchers of electromagnetic wave absorbent materials and the quest for simple preparation methods and homogeneous distribution of heterogeneous structures is continuing. In this study, we synthesized carbon sphere/FeO nanocrystal (CS/FeO) composites by uniformly decorating FeO nanoparticles on the surface of carbon spheres through a simple strategy of expanding the heterogeneous structured interface. The heterogeneous interface formed by graphite and amorphous carbon in the carbon spheres is a boundary-type defect and combined with the magnetic loss capability of the FeO nanocrystals, this composite material has excellent electromagnetic wave absorption properties. The composite material synthesized with 0.05 M solution of iron nitrate has the best electromagnetic wave absorption performance of all samples due to the synergistic effect of interfacial polarization, eddy current loss, defect engineering, and magnetic energy attenuation capability. Reflection losses of -50.932 dB and -49.143 dB were achieved at 4.65 GHz and 10.6 GHz respectively, corresponding to thicknesses of 3.74 mm and 1.74 mm. In addition, the widest effective absorption bandwidth (EAB) at 1.27 mm was 4.5 GHz (13.50-18 GHz). This study enhances the electromagnetic wave absorption performance of carbon spheres by surface-decorating FeO nanoparticles, solves the problem of homogeneity of decorative magnetic oxides on the surface of carbon-based materials, and provides new ideas for the design of controllable, lightweight, ultra-thin composites of carbon-based electromagnetic wave absorbent materials that possess strong electromagnetic wave absorption capability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr02745cDOI Listing

Publication Analysis

Top Keywords

electromagnetic wave
32
wave absorbent
16
carbon spheres
16
wave absorption
16
absorbent materials
12
wave
8
feo nanocrystals
8
surface carbon
8
electromagnetic
8
heterogeneous structures
8

Similar Publications

Mid-infrared photoacoustic microscopy can capture biochemical information without staining. However, the long mid-infrared optical wavelengths make the spatial resolution of photoacoustic microscopy significantly poorer than that of conventional confocal fluorescence microscopy. Here, we demonstrate an explainable deep learning-based unsupervised inter-domain transformation of low-resolution unlabeled mid-infrared photoacoustic microscopy images into confocal-like virtually fluorescence-stained high-resolution images.

View Article and Find Full Text PDF

In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.

View Article and Find Full Text PDF

Oxidative modifications can disrupt protein folds and functions, and are strongly associated with human aging and diseases. Conventional oxidation pathways typically involve the free diffusion of reactive oxygen species (ROS), which primarily attack the protein surface. Yet, it remains unclear whether and how internal protein folds capable of trapping oxygen (O) contribute to oxidative damage.

View Article and Find Full Text PDF

Most bacteria lack membrane-enclosed organelles and rely on macromolecular scaffolds at different subcellular locations to recruit proteins for specific functions. Here, we demonstrate that the optogenetic CRY2-CIB1 system from Arabidopsis thaliana can be used to rapidly direct proteins to different subcellular locations with varying efficiencies in live Escherichia coli cells, including the nucleoid, the cell pole, the membrane, and the midcell division plane. Such light-induced re-localization can be used to rapidly inhibit cytokinesis in actively dividing E.

View Article and Find Full Text PDF

Millimeter-wave and terahertz integrated circuits and chips are expected to serve as the backbone for future wireless networks and high resolution sensing. However, design of these integrated circuits and chips can be quite complex, requiring years of human expertise, careful tailoring of hand crafted circuit topologies and co-design with parameterized and pre-selected templates of electromagnetic structures. These structures (radiative and non-radiative, single-port and multi-ports) are subsequently optimized through ad-hoc methods and parameter sweeps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!