SARS-CoV-2 non-structural protein 13 (nsp13) is a highly conserved helicase and RNA 5'-triphosphatase. It uses the energy derived from the hydrolysis of nucleoside triphosphates for directional movement along the nucleic acids and promotes the unwinding of double-stranded nucleic acids. Nsp13 is essential for replication and propagation of all human and non-human coronaviruses. Combined with its defined nucleotide binding site and druggability, nsp13 is one of the most promising candidates for the development of pan-coronavirus therapeutics. Here, we report the development and optimization of bioluminescence assays for kinetic characterization of nsp13 ATPase activity in the presence and absence of single-stranded DNA. Screening of a library of 5000 small molecules in the presence of single-stranded DNA resulted in the discovery of six nsp13 small-molecule inhibitors with IC values ranging from 6 ± 0.5 to 50 ± 6 μM. In addition to providing validated methods for high-throughput screening of nsp13 in drug discovery campaigns, the reproducible screening hits we present here could potentially be chemistry starting points toward the development of more potent and selective nsp13 inhibitors, enabling the discovery of antiviral therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.2c00165DOI Listing

Publication Analysis

Top Keywords

kinetic characterization
8
nsp13
8
nsp13 atpase
8
atpase activity
8
small-molecule inhibitors
8
nucleic acids
8
single-stranded dna
8
characterization sars-cov-2
4
sars-cov-2 nsp13
4
discovery
4

Similar Publications

Cadmium pollution in water is becoming increasingly serious. Thus, the effective removal of Cd(II) from water has garnered attention. Aluminum hydroxide-modified attapulgite (ATP-AC) was prepared from basic aluminum acetate through a coprecipitation method that could efficiently adsorb Cd(II) in aqueous solution.

View Article and Find Full Text PDF

Cardiac sex-difference functional studies have centred on measurements of twitch force and Ca dynamics. The energy expenditures from these two cellular processes: activation (Ca handling) and contraction (cross-bridge cycling), have not been assessed, and compared, between sexes. Whole-heart studies measuring oxygen consumption do not directly measure the energy expenditure of these activation-contraction processes.

View Article and Find Full Text PDF

This work developed a novel oxidized hierarchical porous carbon (OHPC) with vesicule-like ultrathin graphitic walls via a method of air oxidation and used as an efficient adsorbent for Congo red (CR) and Malachite green (MG) removal. Results show that the OHPC2 oxidized at 400 °C possesses three-dimensional hierarchical pores with vesicule-like ultrathin graphitic walls. The prepared OHPC2 not only has a large specific surface area of 1020 m g with a high pore volume, but also has abundant oxygen-containing functional groups.

View Article and Find Full Text PDF

This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!