Cytotoxicity of lycopene-mediated silver nanoparticles in the embryonic development of zebrafish-An animal study.

J Biochem Mol Toxicol

Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.

Published: October 2022

Nano-silver (AgNP) has biological properties which are significant for consumer products, food technology, and medical applications (e.g., wound care products, implantable medical devices, in diagnosis, drug delivery, and imaging). Thus, the use of nano-silver is becoming more and more widespread in medicine. However, the effect of these AgNPs on zebrafish remains unclear. Whereas, lycopene, a fat-soluble carotenoid acts as a potent antioxidant has proved its major role in treating many oral health problems such as lichen planus, and periodontitis. Usage of these lycopene AgNPs would yield better results in wound healing. In this study, we investigated the cytotoxic effects of AgNPs on fibroblasts cells of humans. To investigate the toxic effects of the lycopene-mediated AgNPs on the zebrafish (Danio rerio) and to examine these effects on the embryonic development of the fetus of this species. In this study, zebrafish embryos were treated with AgNPs 0.5, 1, 2, 3, 4 or 5 L nanoparticles/ml for 24 to 96 h post fertilization. Our results showed that with the increasing concentration of nanoparticles, there was a very mild toxic effect. Less toxic effects were observed with 1μl. Our results show that exposure to silver nanoparticles is less toxic to embryonic zebrafish at lower concentrations. The results will contribute to the current understanding of the potential biotoxic effects of nanoparticles and will aid in the safety assessment and synthesis of silver oxide nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.23173DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
8
embryonic development
8
agnps zebrafish
8
toxic effects
8
nanoparticles
5
agnps
5
effects
5
cytotoxicity lycopene-mediated
4
lycopene-mediated silver
4
nanoparticles embryonic
4

Similar Publications

Photon-counting mammography is an emerging modality that allows for spectral imaging and provides a differentiation of material compositions. The development of photon-counting mammography-specific contrast agents has yet to be explored. In this study, the contrast, sensitivity, and organ dose between silver sulfide nanoparticles (AgS-NPs) and a clinically approved iodinated agent (iopamidol) were investigated using a contrast-embedded gradient ramp phantom and a prototype scanner.

View Article and Find Full Text PDF

Microorganisms are becoming resistant to drugs and antimicrobials, making it a significantly critical global issue. Nosocomial infections are resulting in alarmingly increasing rates of morbidity and mortality. Plant derived compounds hold numerous antimicrobial properties, making them a very capable source to counteract resistant microbial strains.

View Article and Find Full Text PDF

This study investigated endophytic fungi isolated from the medicinal plant Panax notoginseng. Among these, the endophytic fungus SQ3, identified as Chaetomium globosum, was capable of reducing silver ions to form metallic silver nanoparticles. The green-synthesized silver nanoparticles (AgNPs) presented a distinct surface plasmon resonance peak at 424 nm, with particle sizes between 2.

View Article and Find Full Text PDF

Anti-inflammatory coupled anti-angiogenic airway stent effectively suppresses tracheal in-stents restenosis.

J Nanobiotechnology

January 2025

Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.

Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!