Designing a cost-effective catalyst with high performance towards the oxygen electro-oxidation reaction (ORR) is of great interest for the development of green energy storage and conversion technologies. We report herein a facile self-assembly strategy in a mild reducing environment to realize an urchin-like NiPt bimetallic alloy with the domination of the (111) facets as an efficient ORR electrocatalyst. In the rotating-disk electrode test, the as-obtained NiPt nanourchins (NUCs)/C catalyst demonstrates an increase in both onset potential (0.96 ) and half-wave potential (0.92 ) and a direct four-electron ORR pathway with enhanced reaction kinetics. Additionally, the as-made NiPt NUCs/C electrocatalyst also shows impressive ORR catalytic stability compared to a commercial Pt NPs/C catalyst after an accelerated durability test with 15.29% degradation in mass activity, which is 3.04-times lower than 46.48% of the Pt NPs/C catalyst. The great ORR performance of the as-made catalyst is due to its unique urchin-like morphology with the dominant (111) facets and the synergistic and electronic effects of alloying Ni and Pt. This study not only provides a robust ORR electrocatalyst, but also opens a facile but effective route for fabricating 3D Pt-based binary and ternary alloy catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt01268e | DOI Listing |
ACS Appl Mater Interfaces
January 2025
CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse nonequilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres ( = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
The design of efficient photocatalysts is crucial for photocatalytic CO reduction. This study developed photocatalysts based on MIL-101(Cr) composited with a facet-engineered Pt/Pd nanoalloy (PPNA). Photocatalytic performance evaluations show that MIL-101(Cr) loaded with PPNA exposing {111} facets, namely M-A(111), exhibits a CO to CH conversion rate of 9.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, PR China. Electronic address:
Background: Accurate monitoring glucose level is significant for human health management, especially in the prevention, diagnosis, and management of diabetes. Electrochemical quantification of glucose is a convenient and rapid detection method, and the crucial aspect in achieving great sensing performance lies in the selection and design of the electrode material. Among them, CuO, with highly catalysis ability, is commonly used as electrocatalyst in non-enzymatic glucose sensing.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
The instability of hybrid wide-bandgap (WBG) perovskite materials (with bandgap larger than 1.68 eV) still stands out as a major constraint for the commercialization of perovskite/silicon tandem photovoltaics, yet its correlation with the facet properties of WBG perovskites has not been revealed. Herein, we combine experiments and theoretical calculations to comprehensively understand the facet-dependent instability of WBG perovskites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!