The biomechanical demands of arboreal locomotion are generally thought to necessitate specialized kinetic and kinematic gait characteristics. While such data have been widely collected across arboreal quadrupeds, no study has yet explored how arboreal substrates influence the locomotor behavior of birds. Parrots - an ancient arboreal lineage that exhibit numerous anatomical specializations towards life in the trees - represent an ideal model group within which to examine this relationship. Here, we quantifiy limb loading patterns within the rosy-faced lovebird (Agapornis roseicollis) across a range of experimental conditions to define the circumstances under which arboreal gaits are triggered, and how, during arboreal walking, gait patterns change across substrates of varying diameter. In so doing, we address longstanding questions as to how the challenges associated with arboreality affect gait parameters. Arboreal locomotion was associated with the adoption of a sidling gait, which was employed exclusively on the small and medium diameter poles but not terrestrially. When sidling, the hindlimbs are decoupled into a distinct leading limb (which imparts exclusively braking forces) and trailing limb (which generates only propulsive forces). Sidling was also associated with relatively low pitching forces, even on the smallest substrate. Indeed, these forces were significantly lower than mediolateral forces experienced during striding on terrestrial and large diameter substrates. We propose that the adoption of sidling gaits is a consequence of avian foot morphology and represents a novel form of arboreal locomotion where inversion/eversion is impossible. Such movement mechanics is likely widespread among avian taxa and may also typify patterns of arboreal locomotion in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.244571DOI Listing

Publication Analysis

Top Keywords

arboreal locomotion
20
arboreal
10
agapornis roseicollis
8
adoption sidling
8
forces
6
locomotion
5
patterns
4
patterns single
4
limb
4
single limb
4

Similar Publications

For over a century researchers have marveled at the square-shaped toe tips of several species of climbing salamanders (genus Aneides), speculating about the function of large blood sinuses therein. Wandering salamanders (Aneides vagrans) have been reported to exhibit exquisite locomotor control while climbing, jumping, and gliding high (88 m) within the redwood canopy; however, a detailed investigation of their digital vascular system has yet to be conducted. Here, we describe the vascular and osteological structure of, and blood circulation through, the distal regions of the toes of A.

View Article and Find Full Text PDF

The significance of forelimb morphology has been discussed with a focus on specific morphological aspects; nonetheless, the correlation of overall morphology, including various linear measurements, with respect to ecological preference and adaptation has not been extensively explored, particularly using multiple taxa. We investigated the morphological characteristics of the long bones in the forelimbs of mammalian species and their relationship with specific functional adaptations using 20 linear measurements and 22 terrestrial species from 7 orders. Principal component analysis and canonical discriminant analysis showed that the lengths of the humerus, radius, and ulna as well as the distance from the smallest width to the proximal and distal ends, and the deltoid tuberosity length distinguished four adaptations: arboreal, terrestrial, fossorial, and semi-aquatic.

View Article and Find Full Text PDF

The relationship between locomotion and hindlimb morphology in the leopard (Panthera pardus) using a geometric morphometric approach.

Biol Open

December 2024

School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Wits 2050, Johannesburg, Gauteng 2000, South Africa.

Felid bone morphology is highly influenced by factors such as locomotion, body size, and foraging behaviour. Understanding how these factors influence bone morphology is important for interpreting the behaviour and ecology of such species. This study aimed to determine the extent to which Panthera pardus (i.

View Article and Find Full Text PDF

Many wingless arboreal arthropods can glide back to tree trunks following free falls. However, little is known about the behaviors and aerodynamics underlying such aerial performance, and how this may be influenced by body size. Here, we studied gliding performance by nymphs of the stick insect Extatosoma tiaratum, focusing on the dynamics of J-shaped trajectories and how gliding capability changes during ontogeny.

View Article and Find Full Text PDF

Objective: Chimpanzees are altricial in terms of their locomotor development and transition from being carried to engaging in suspensory and arboreal locomotor behaviors to eventually relying on terrestrial quadrupedalism as their main form of locomotion. Here, we consider the mechanical implications of femoral cortical bone restructuring during growth and locomotor development in wild chimpanzees.

Materials And Methods: Cortical bone structure was examined in an ontogenetic sample of wild chimpanzees from a single subspecies (P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!