Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous disease. Not all patients with COPD respond to available drugs. Identifying respondents to therapy is critical to delivering the most appropriate treatment and avoiding unnecessary medication. Recognition of individual patients' dominant characteristics by phenotype is a useful tool to better understand their disease and tailor treatment accordingly. To look for a suitable phenotype, it is important to understand what makes COPD complex and heterogeneous. The pathology of COPD includes small airway disease and/or emphysema. Thus, COPD is not a single disease entity. In addition, there are two types (panlobular and centrilobular) of emphysema in COPD. The coexistence of different pathological subtypes could be the reason for the complexity and heterogeneity of COPD. Thus, it is necessary to look for the phenotype based on the difference in the underlying pathology. Review of the literature has shown that clinical manifestation and therapeutic response to pharmacological therapy are different depending on the presence of computed tomography-defined airway wall thickening in COPD patients. Defining the phenotype of COPD based on the underlying pathology is encouraging as most clinical manifestations can be distinguished by the presence of increased airway wall thickness. Pharmacological therapy has shown significant effect on COPD with airway wall thickening. However, it has limited use in COPD without an airway disease. The phenotype of COPD based on the underlying pathology can be a useful tool to better understand the disease and adjust treatment accordingly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9537658 | PMC |
http://dx.doi.org/10.4046/trd.2022.0029 | DOI Listing |
Cell Death Dis
January 2025
Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.
View Article and Find Full Text PDFJ Pathol Clin Res
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, PR China.
CXC chemokine receptor 4 (CXCR4) and programmed cell death-ligand 1 (PD-L1) are two critical molecules involved in the tumor immune microenvironment. However, the impact of platinum drugs, such as cisplatin, on CXCR4 or PD-L1 expression and the underlying mechanisms in gastric cancer (GC) remain unknown. Moreover, the correlation between their expression levels in GC remains elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.
The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Medical Biochemistry, Institute of Health, Dambi Dollo University, Dambi Dolo, Ethiopia.
Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!