Mucopolysaccharidosis type I (MPS I) is an autosomal-recessive metabolic disorder caused by an enzyme deficiency of lysosomal alpha-l-iduronidase (IDUA). Haematopoietic stem cell transplantation (HSCT) is the therapeutic option of choice in MPS I patients younger than 2.5 years, which has a positive impact on neurocognitive development. However, impaired growth remains a problem. In this monocentric study, 14 patients with MPS I (mean age 1.72 years, range 0.81-3.08) were monitored according to a standardised follow-up program after successful allogeneic HSCT. A detailed anthropometric program was carried out to identify growth patterns and to determine predictors of growth in these children. All patients are alive and in outpatient care (mean follow-up 8.1 years, range 0.1-16.0). Progressively lower standard deviation scores (SDS) were observed for body length (mean SDS -1.61; -4.58 - 3.29), weight (-0.56; -3.19 - 2.95), sitting height (-3.28; -7.37 - 0.26), leg length (-1.64; -3.88 - 1.49) and head circumference (0.91; -2.52 - 6.09). Already at the age of 24 months, significant disproportions were detected being associated with increasing deterioration in growth for age. Younger age at HSCT, lower counts for haemoglobin and platelets, lower potassium, higher donor-derived chimerism, higher counts for leukocytes and recruitment of a matched unrelated donor (MUD) positively correlated with body length ( ≤ 0.05). In conclusion, this study characterised predictors and aspects of growth patterns in children with MPS I after HSCT, underlining that early HSCT of MUD is essential for slowing body disproportion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9259397PMC
http://dx.doi.org/10.1002/jmd2.12291DOI Listing

Publication Analysis

Top Keywords

growth patterns
12
predictors growth
8
patterns children
8
haematopoietic stem
8
stem cell
8
cell transplantation
8
body length
8
hsct
5
growth
5
children mucopolysaccharidosis
4

Similar Publications

Disruption of the blood supply to a limb in conjunction with active movement boosts muscle growth, aids in rehabilitation, and allows controlled exploration of the sensorimotor system. Yet, the underlying neuromechanical changes have not been observed in great detail. This study aims to report the acute neuromuscular effects of temporary blood flow restriction (BFR) through behavioral changes at the level of motor units (MUs) using high-density surface electromyography on the abductor digiti minimi muscle during 20 trapezoidal and sinusoidal isometric force tracking tasks (5 pre-BFR, 5 during BFR, and 10 post-BFR).

View Article and Find Full Text PDF

This study presents a thorough bibliometric analysis of Neuroinformatics over the past 20 years, offering insights into the journal's evolution at the intersection of neuroscience and computational science. Using advanced tools such as VOS viewer and methodologies like co-citation analysis, bibliographic coupling, and keyword co-occurrence, we examine trends in publication, citation patterns, and the journal's influence. Our analysis reveals enduring research themes like neuroimaging, data sharing, machine learning, and functional connectivity, which form the core of Neuroinformatics.

View Article and Find Full Text PDF

sp. nov., a crude oil aggregation-forming anaerobic bacterium isolated from marine sediment.

Int J Syst Evol Microbiol

January 2025

Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.

A crude oil aggregation-forming, strictly anaerobic, Gram-stain-positive, spore-forming, rod-shaped, motile and mesophilic bacterium, named strain SH18-2, was isolated from marine sediment near Sado Island in the Sea of Japan. The temperature, salinity and pH ranges of this strain for the growth were 15-40 °C (optimum 35 °C), 0.5-6.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a leading cause of dementia, is associated with significant respiratory dysfunctions. Our study explores the role of astrogliosis in the brainstem retrotrapezoid nucleus (RTN), a key breathing regulatory center, and its impact on breathing control and AD pathology in mice. Using Tg-2576 AD and wild-type mice, we investigated the effect of silencing the transforming growth factor-beta receptor II (TGFβR II) in the RTN.

View Article and Find Full Text PDF

The integral role of in brain function: from neurogenesis to synaptic plasticity and social behavior.

Acta Neurobiol Exp (Wars)

January 2025

Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene is a critical tumor suppressor that plays an essential role in the development and functionality of the central nervous system. Located on chromosome 10 in humans and chromosome 19 in mice, PTEN encodes a protein that regulates cellular processes such as division, proliferation, growth, and survival by antagonizing the PI3K‑Akt‑mTOR signaling pathway. In neurons, PTEN dephosphorylates phosphatidylinositol‑3,4,5‑trisphosphate (PIP3) to PIP2, thereby modulating key signaling cascades involved in neurogenesis, neuronal migration, and synaptic plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!