Access to 3D Alicyclic Amine-Containing Fragments through Transannular C-H Arylation.

Synlett

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.

Published: March 2019

In this Letter, we adapt a recently reported Pd-catalyzed transannular C(sp)-H arylation of alicyclic amines for applications in fragment-based drug discovery (FBDD). We apply this method to the synthesis of a series of 6-arylated 3-azabicyclo[3.1.0]hexanes that are rule-of-three compliant fragments. Several modifications were made to the Pd-catalyzed C-H arylation method to enhance its utility in fragment synthesis. These include the use of microwave heating to shorten reaction times to under 1 h and the development of new approaches for directing group cleavage. Finally, we demonstrate that this fragment library falls within desirable physicochemical space for FBDD applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273010PMC
http://dx.doi.org/10.1055/s-0037-1610861DOI Listing

Publication Analysis

Top Keywords

c-h arylation
8
access alicyclic
4
alicyclic amine-containing
4
amine-containing fragments
4
fragments transannular
4
transannular c-h
4
arylation letter
4
letter adapt
4
adapt reported
4
reported pd-catalyzed
4

Similar Publications

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

Late-Stage C-H Functionalization of Dehydroalanine-Containing Peptides with Arylthianthrenium Salts and Its Application in Synthesis of Tentoxin Analogue.

Org Lett

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

Dehydrophenylalanine has a characteristic unsaturated double bond that makes it indispensable in the context of peptides and proteins. In this study, we report the Pd-catalyzed C(sp)-H arylation of dehydroalanine-containing peptides with arylthianthrenium salts under mild and base free conditions, which provides efficient access to dehydrophenylalanine-containing peptides. This approach enables the efficient coupling of different drug scaffolds and bioactive molecules to the peptides.

View Article and Find Full Text PDF

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

The C2- or C3-selective direct C-H arylation of nonsubstituted 1-pyrrole with aryl chlorides/nonaflates was achieved using catalysts derived from palladium and appropriate phosphine ligands. The site selectivity of the arylation can be switched by changing the ligands, and the C3-selective arylation of nonsubstituted 1-pyrrole was realized for the first time. BuOLi played an important role in suppressing N-arylation and accelerating C2- or C3-arylation.

View Article and Find Full Text PDF

Even though α-arylation of ketones is attractive for direct C-H functionalization of organic substrates, the method largely relies on phosphine-ligated palladium complexes. Only recently, efforts have focused on developing nitrogen-based ligands as a more sustainable alternative to phosphines, with pyridine-functionalized pyridinium amidate (pyr-PYA) ,'-bidentate ligands displaying good selectivity and activity. Here, we report on a second generation set of catalyst precursors that feature a 5-membered N-heterocycle instead of a pyridine as chelating unit of the PYA ligand to provide less steric congestion for the rate-limiting transmetalation of the enolate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!