Defining the Roles of Cardiokines in Human Aging and Age-Associated Diseases.

Front Aging

Department of Medicine/Cardiology, School of Medicine, University of Colorado, Aurora, CO, United States.

Published: April 2022

In recent years an expanding collection of heart-secreted signaling proteins have been discovered that play cellular communication roles in diverse pathophysiological processes. This minireview briefly discusses current evidence for the roles of cardiokines in systemic regulation of aging and age-associated diseases. An analysis of human transcriptome and secretome data suggests the possibility that many other cardiokines remain to be discovered that may function in long-range physiological regulations. We discuss the ongoing challenges and emerging technologies for elucidating the identity and function of cardiokines in endocrine regulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9261440PMC
http://dx.doi.org/10.3389/fragi.2022.884321DOI Listing

Publication Analysis

Top Keywords

roles cardiokines
8
aging age-associated
8
age-associated diseases
8
defining roles
4
cardiokines
4
cardiokines human
4
human aging
4
diseases years
4
years expanding
4
expanding collection
4

Similar Publications

Friend or foe: the paradoxical roles of MG53 in diabetes mellitus.

Diabetes

November 2024

Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education; Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology; Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 64600, China.

MG53 is predominantly expressed in striated muscles. The role of MG53 in diabetes mellitus has been gradually elucidated but is still full of controversy. Some reports have indicated that MG53 is upregulated in animal models with metabolic disorders, and that muscle-specific MG53 upregulation is sufficient to induce whole-body insulin resistance and metabolic syndrome through targeting both the insulin receptor (IR) and IR substrate-1 (IRS-1) for ubiquitin-dependent degradation.

View Article and Find Full Text PDF

Secreted proteins have gained more and more attentions, since they can become therapeutic targets, drugs and biomarkers for prevention, diagnosis and treatment of disease and aging. In 2014, Metrnl (also named Meteorin-like, Cometin, Subfatin, Interleukin-39, Interleukin-41, Meteorin-β, and Metrn-β/Metrnβ), as a novel secreted protein released from a certain tissue, was reported by us and others. During the past decade, the number of articles on Metrnl has continued to increase.

View Article and Find Full Text PDF

Doxorubicin (DOX) is a potent chemotherapeutic drug; however, its clinical use is limited due to its cardiotoxicity. Mitochondrial dysfunction plays a vital role in the pathogenesis of DOX-induced cardiomyopathy. Follistatin-like protein 1 (FSTL1) is a potent cardiokine that protects the heart from diverse cardiac diseases, such as myocardial infarction, cardiac ischemia/reperfusion injury, and heart failure.

View Article and Find Full Text PDF

Roles of organokines in intervertebral disc homeostasis and degeneration.

Front Endocrinol (Lausanne)

March 2024

Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

The intervertebral disc is not isolated from other tissues. Recently, abundant research has linked intervertebral disc homeostasis and degeneration to various systemic diseases, including obesity, metabolic syndrome, and diabetes. Organokines are a group of diverse factors named for the tissue of origin, including adipokines, osteokines, myokines, cardiokines, gastrointestinal hormones, and hepatokines.

View Article and Find Full Text PDF

Cardiomyopathies (CMs) are highly heterogeneous progressive heart diseases characterised by structural and functional abnormalities of the heart, whose intricate pathogenesis has resulted in a lack of effective treatment options. Mitsugumin 53 (MG53), also known as Tripartite motif protein 72 (TRIM72), is a tripartite motif family protein from the immuno-proteomic library expressed primarily in the heart and skeletal muscle. Recent studies have identified MG53 as a potential cardioprotective protein that may play a crucial role in CMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!