Coronavirus disease (COVID-19) has led to increasing demand for single-use plastic which aggravates the already existing plastic waste problem. Not only does the demand for personal protective equipment (PPE) increase, but also people shift their preference to online shopping and food delivery to comply with administrative policies for COVID-19 pandemic control. The used PPEs, packaging materials, and food containers may not be handled or recycled properly after their disposal. As a result, the mismanaged plastic waste is discharged into the environment and it may pose even greater risks after breaking into smaller fragments, which was regarded as the source of secondary microplastics (MPs, < 5 mm) or nanoplastics (NPs, < 1 μm). The main objective of this manuscript is to provide a review of the studies related to microplastic release due to pandemic-associated plastic waste. This study summarizes the limited work published on the ecotoxicological/toxicological effect of MPs/NPs released from PPE on aquatic organisms, soil organisms, as well as humans. Given the current status of research on MPs from COVID-related plastic waste, the immediate research directions needed on this topic were discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257196 | PMC |
http://dx.doi.org/10.1016/j.jclepro.2022.133027 | DOI Listing |
Anal Methods
January 2025
Jiangsu Beier Machinery Co. Ltd, Jiangsu, 215600, China.
Plastic waste management is one of the key issues in global environmental protection. Integrating spectroscopy acquisition devices with deep learning algorithms has emerged as an effective method for rapid plastic classification. However, the challenges in collecting plastic samples and spectroscopy data have resulted in a limited number of data samples and an incomplete comparison of relevant classification algorithms.
View Article and Find Full Text PDFInt J Food Sci
January 2025
Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India.
The widespread reliance on single-use plastics (SUPs) has fostered a global throwaway culture, especially in the food packaging industry, where convenience and low cost have driven their adoption, posing serious environmental threats, particularly to marine ecosystems and biodiversity. Edible and ecofriendly packaging made from millet, specifically sorghum ( () Moench), is a promising solution to mitigate SUP consumption and promote sustainability. This study explores the development of edible sorghum bowls, enhanced through roasting and incorporating 3 g of hibiscus and rose flower powders.
View Article and Find Full Text PDFEnviron Int
January 2025
Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, United Kingdom. Electronic address:
Antimicrobial resistance (AMR) and environmental degradation are existential global public health threats. Linking microplastics (MPs) and AMR is particularly concerning as MPs pollution would have significant ramifications on controlling of AMR; however, the effects of MPs on the spread and genetic mechanisms of AMR bacteria remain unclear. Herein, we performed Simonsen end-point conjugation to investigate the impact of four commonly used MPs on transfer of clinically relevant plasmids.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.
Enzymatic degradation of plastic pollution offers a promising environmentally friendly waste management strategy, however, suitable biocatalysts must be screened and developed. Traditional screening methods using soluble or solubilised polymers do not necessarily identify enzymes that are effective against solid or crystalline polymers. This study presents a simple, time-saving and cost-effective method for identifying microorganisms and enzymes capable of degrading polymeric films.
View Article and Find Full Text PDFPLoS One
January 2025
Waste Data and Analysis Center, Department of Technology & Society, Stony Brook University, Stony Brook, New York, United States of America.
The composition of solid waste affects technology choices and policy decisions regarding its management. Analyses of waste composition studies are almost always made on a parameter by parameter basis. Multivariate distance techniques can create wholisitic determinations of similarities and differences and were applied here to enhance a series of waste composition comparisons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!