Mechanism of in regulating cold tolerance of cucumber.

Hortic Res

The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Haidian District, Zhongguancun South St, Beijing 100081, China.

Published: May 2022

G proteins function directly in cold tolerance of plants. However, the framework of the Gα subunit in regulating cold tolerance remains to be explored. Here, we used protein interaction techniques to elucidate cold-related pathways regulated by CsGPA1. Suppression of decreased the cold tolerance of cucumber. Further protein interaction experiments showed that CsGPA1 interacted with Csa_4G663630.1 located in the cell membrane and nucleus and with CsCOR413PM2 located in the cell membrane. Csa_4G663630.1 was named CsCDL1 due to its 71% protein sequence similarity to AtCDL1, a positive brassinolide signal gene. Suppression of decreased the expression of most of brassinolide-related genes (including ) under cold stress. Principal component and linear regression analyses showed that expressions of and brassinolide-related genes were positively correlated. Suppression of also decreased cold tolerance of cucumber. The expression and protein content of and in -RNAi and -RNAi lines were determined under cold tolerance. Only silencing affected the expression and protein content of during cold stress. Moreover, suppression of or decreased Ca influx at low temperature and then decreased the expression of -. These results indicated that the --Ca axis regulated the expression of - during cold stress. In conclusion, Our results provide the first framework of in regulating cold tolerance of cucumber, laying the foundation for further mechanistic studies of cold tolerance for Gα in cucumber.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9265480PMC
http://dx.doi.org/10.1093/hr/uhac109DOI Listing

Publication Analysis

Top Keywords

cold tolerance
32
tolerance cucumber
16
suppression decreased
16
regulating cold
12
cold stress
12
cold
11
tolerance
8
protein interaction
8
decreased cold
8
located cell
8

Similar Publications

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

OsNCED5 confers cold stress tolerance through regulating ROS homeostasis in rice.

Plant Physiol Biochem

December 2024

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Cold stress is one of the most serious abiotic stresses that affects the growth and yield in rice. However, the molecular mechanism by which abscisic acid (ABA) regulates plant cold stress tolerance is not yet clear. In this study, we identified a member of the OsNCED (9-cis-epoxycarotenoid dioxygenase) gene family, OsNCED5, which confers cold stress tolerance in rice.

View Article and Find Full Text PDF

Inorganic bioelectric system for nitrate removal with low NO production at cold temperatures of 4 and 10 °C.

Water Res

December 2024

Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet, Bygning 115, 2800 Kgs, Lyngby, Denmark. Electronic address:

Groundwater, essential for ecological stability and freshwater supply, faces escalating nitrate contamination. Traditional biological methods struggle with organic carbon scarcity and low temperatures, leading to an urgent need to explore efficient approaches for groundwater remediation. In this work, we proposed an inorganic bioelectric system designed to confront these challenges.

View Article and Find Full Text PDF

The increasing cultivation of perennial C4 grass known as Miscanthus spp. for biomass production holds promise as a sustainable source of renewable energy. Unlike the sterile triploid hybrid of M.

View Article and Find Full Text PDF

Unraveling key ABA pathways, including OsWRKY71-OsABA8ox1 and OsbZIP73-OsNCED5, provides valuable insights for improving cold tolerance in rice breeding for cold-prone regions. Cold stress limits rice (Oryza sativa L.) production in cooler climates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!