A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of rhinomanometric and computational fluid dynamic assessment of nasal resistance with respect to measurement accuracy. | LitMetric

Purpose: Computational fluid dynamics (CFD)-based calculation of intranasal airflow became an important method in rhinologic research. Current evidence shows weak to moderate correlation as well as a systematic underprediction of nasal resistance by numerical simulations. In this study, we investigate whether these differences can be explained by measurement uncertainties caused by rhinomanometric devices and procedures. Furthermore, preliminary findings regarding the impact of tissue movements are reported.

Methods: A retrospective sample of 17 patients, who reported impaired nasal breathing and for which rhinomanometric (RMM) measurements using two different devices as well as computed tomography scans were available, was investigated in this study. Three patients also exhibited a marked collapse of the nasal valve. Agreement between both rhinomanometric measurements as well as between rhinomanometry and CFD-based calculations was assessed using linear correlation and Bland-Altman analyses. These analyses were performed for the volume flow rates measured at trans-nasal pressure differences of 75 and 150 Pa during inspiration and expiration.

Results: The correlation between volume flow rates measured using both RMM devices was good (R > 0.72 for all breathing states), and no relevant differences in measured flow rates was observed (21.6 ml/s and 14.8 ml/s for 75 and 150 Pa, respectively). In contrast, correlation between RMM and CFD was poor (R < 0.5) and CFD systematically overpredicted RMM-based flow rate measurements (231.8 ml/s and 328.3 ml/s). No differences between patients with and without nasal valve collapse nor between inspiration and expiration were observed.

Conclusion: Biases introduced during RMM measurements, by either the chosen device, the operator or other aspects as for example the nasal cycle, are not strong enough to explain the gross differences commonly reported between RMM- and CFD-based measurement of nasal resistance. Additionally, tissue movement during breathing is most likely also no sufficient explanation for these differences.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-022-02699-9DOI Listing

Publication Analysis

Top Keywords

flow rates
12
computational fluid
8
nasal resistance
8
volume flow
8
rates measured
8
comparison rhinomanometric
4
rhinomanometric computational
4
fluid dynamic
4
dynamic assessment
4
nasal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!