A versatile meteorological index for predicting heat stress in dairy cattle remains elusive. Despite numerous attempts at developing such indices and widespread use of some, there is growing skepticism about the accuracy and adequacy of the existing indices as well as the general statistical approach used to develop them. At the same time, precision farming of high-yielding animals in a drastically changing climate calls for more effective prediction and alleviation of heat stress. The present paper revisits classical work on human biometeorology, particularly the apparent temperature scale, to draw inspiration for advancing research on heat stress in dairy cattle. The importance of a detailed, mechanistic understanding of heat transfer and thermoregulation is demonstrated and reiterated. A model from the literature is used to construct a framework for identifying and characterizing conditions of potential heat stress. New parameters are proposed to translate the heat flux calculations based on heat-balance models into more tangible and more useful meteorological indices, including an apparent temperature for cattle and a thermoregulatory exhaustion index. A validation gap in the literature is identified as the main hindrance to the further development and deployment of heat-balance models. Recommendations are presented for systematically addressing this gap in particular and continuing research within the proposed framework in general.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418108 | PMC |
http://dx.doi.org/10.1007/s00484-022-02321-2 | DOI Listing |
Plant Commun
January 2025
College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:
High-temperature stress, also referred to as heat stress, often has detrimental effects on plant growth and development. Phytochromes have been implicated in regulating plant heat stress responses, but the role of blue-light receptors, such as cryptochromes, in plant blue light-dependent heat stress response has remained unclear. We found that the blue light receptor cryptochrome 1 (CRY1) negatively regulates heat stress tolerance (thermotolerance) in Arabidopsis.
View Article and Find Full Text PDFMed Sci Monit
January 2025
College of Dentistry, King Khalid University, Abha, Saudi Arabia.
BACKGROUND Indirect ceramic restorations often need multiple firings to match the shade of natural teeth or need after-correction and ceramic addition during the clinical trial stage. Many studies have examined how multiple firings affect the mechanical characteristics of zirconia-veneered prostheses. The effect of firing number on adhesion between these core and heat-pressed lithium disilicate veneering ceramics is unclear.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Cardiology, Nagoya Ekisaikai Hospital, Nagoya, Japan.
Objective: Patients with cardiovascular disease are considered a high-risk population for heat-related illnesses. This study aimed to describe the difference in physical activity between summer and fall among patients with cardiovascular disease and their recognition of heatstroke prevention in an urban area with high temperature conditions.
Results: We enrolled 56 outpatients who participated in cardiac rehabilitation in the summer of 2022 (median age, 75 years [interquartile range, 68-80]).
J Orthop Surg Res
January 2025
Linyi People's Hospital postgraduate training base of Guangzhou University of Traditional Chinese Medicine, Linyi, Shandong, 276000, China.
Background: The endoplasmic reticulum stress (ER stress) has been involved in various musculoskeletal disorders including non-traumatic osteonecrosis of femoral head (NT-ONFH).
Objective: The current study aimed to investigate the association of glucose-regulated protein 78 (GRP78) as well as CCAAT/enhancer-binding protein homologous protein (CHOP) expressions in serum and femoral head (FH) tissues with NT-ONFH's severity.
Methods: We enrolled NT-ONFH patients (n = 150) alongside healthy controls (HCs, n = 150).
BMC Plant Biol
January 2025
Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan.
Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!