Promising co-inoculation strategies to reduce arsenic toxicity in soybean.

Environ Sci Pollut Res Int

Departamento de Biología Molecular, FCEFQyN, Instituto de Biotecnología Ambiental Y Salud, INBIAS-CONICET, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina.

Published: December 2022

Arsenic (As) is the cause for concern worldwide due to its high toxicity. Its presence in agricultural soils and groundwater adversely affects soybean (Glycine max L.) growth and yield and also endangers food safety. Plant growth-promoting rhizobacteria (PGPR) could be used as part of cost-effective and eco-friendly strategies to mitigate As phytotoxicity. However, simple inoculation of soybean with PGPR Bradyrhizobium japonicum E109 (E109), a common practice in Argentina, is not effective in counteracting the effects of As exposure. Our aim was to assess whether the response of soybean to arsenate (AsV) and arsenite (AsIII) could be helpfully modulated by co-inoculating E109 with the free-living PGPRs Azospirillum brasilense Cd (Cd) or Bacillus pumilus SF5 (SF5). Co-inoculation with E109 + SF5 alleviated As-induced depletion of chlorophyll a and b, and carotenoid content, reaching an increase of 26, 28 y 31%, respectively. It also enhanced nodulation (15-19%) under As exposure. E109 + Cd and E109 + SF5 induced changes in the antioxidant system, which could be related to the maintenance of redox homeostasis. Moreover, As accumulation was reduced by 53% in aerial parts of plants inoculated with E109 + Cd, and by 16% in the roots of those inoculated with E109 + SF5. The strains selected show interesting potential for the development of biotechnological schemes to improve soybean yield while guaranteeing safer food production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-21443-zDOI Listing

Publication Analysis

Top Keywords

soybean
5
promising co-inoculation
4
co-inoculation strategies
4
strategies reduce
4
reduce arsenic
4
arsenic toxicity
4
toxicity soybean
4
soybean arsenic
4
arsenic concern
4
concern worldwide
4

Similar Publications

In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.

View Article and Find Full Text PDF

This study aimed to evaluate the effects of dietary fat source and feeding duration on growth performance, carcass characteristics, and meat quality of finishing pigs. A total of 450 twenty-one-week-old finishing pigs with an average body weight of 113.7 ± 8 kg were housed in 90 pens assigned to one of five dietary treatments in a 2×2 + 1 factorial design.

View Article and Find Full Text PDF

Modulating the aroma and taste profile of soybean using novel strains for fermentation.

Curr Res Food Sci

December 2024

Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore, 117543, Singapore.

A key factor influencing consumer acceptance of soybean products is the aroma and taste profile, which can be modulated through fermentation using unique microbial strains. This study aimed to identify and characterize novel microbial strains with the potential to enhance flavour profiles including umami, while reducing undesirable flavour notes such as beany aromas. The results showed an 800% (8-fold) increase in free amino acids in samples fermented with , which correlated with an increase in umami intensity as measured using an E-tongue.

View Article and Find Full Text PDF

Black oilseed crops are rich in diverse phenolic compounds and have excellent antioxidant activities, as reported in traditional Chinese medicine. Testa (seed coat) and peeled seeds (cotyledon, embryo, and other structures) are the seed's crucial components, contributing to the variation in phytonutrient, phenol content, bioactive component, and protective and pharmacological effects. However, comprehensive and comparative information on total phenol, flavonoid, antioxidant, and metabolic profiles in black seed testa and peeled sesame, soybean, peanut, and rapeseed seeds is rare.

View Article and Find Full Text PDF

Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!