The role of epistasis in driving adaptation has remained an unresolved problem dating back to the Evolutionary Synthesis. In particular, whether epistatic interactions among genes could promote parallel evolution remains unexplored. To address this problem, we employ an Evolve and Resequence (E&R) experiment, using the copepod Eurytemora affinis, to elucidate the evolutionary genomic response to rapid salinity decline. Rapid declines in coastal salinity at high latitudes are a predicted consequence of global climate change. Based on time-resolved pooled whole-genome sequencing, we uncover a remarkably parallel, polygenic response across ten replicate selection lines, with 79.4% of selected alleles shared between lines by the tenth generation of natural selection. Using extensive computer simulations of our experiment conditions, we find that this polygenic parallelism is consistent with positive synergistic epistasis among alleles, far more so than other mechanisms tested. Our study provides experimental and theoretical support for a novel mechanism promoting repeatable polygenic adaptation, a phenomenon that may be common for selection on complex physiological traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276764 | PMC |
http://dx.doi.org/10.1038/s41467-022-31622-8 | DOI Listing |
mLife
December 2024
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China.
Plant Physiol
December 2024
Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain.
The number and distribution of trichomes, i.e., the trichome pattern, in different plant organs shows a conspicuous inter- and intraspecific diversity across Angiosperms that is presumably involved in adaptation to numerous environmental factors.
View Article and Find Full Text PDFSince the introduction of H3N2 influenza A viruses in the human population, these viruses have continuously evolved to escape human immunity, with mutations occurring in and around the receptor binding site. This process, called antigenic drift, recently resulted in viruses that recognize elongated glycans that are not abundantly displayed in the human respiratory tract. Such receptor specificities hampered our ability to pick and propagate vaccine strains.
View Article and Find Full Text PDFCell Mol Neurobiol
November 2024
Division of Addiction Research and Education, Center for Sports, Exercise, and Mental Health, Western University Health Sciences, Pomona, CA, USA.
The global public health addiction crisis has been stark, with over 932,400 deaths in the USA and Canada from opioid overdose since 1999-2020, surpassing the mortality rates at the top of the HIV/AIDS epidemic. Both nations exhibit opioid consumption rates significantly above the norm for developed countries. Analgesic type of opioids present both therapeutic benefits and substantial health risks, necessitating balanced drug regulation, careful prescribing, and dedicated opioid stewardship.
View Article and Find Full Text PDFElife
July 2024
The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, United States.
Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!