Aβ oligomers from human brain impair mossy fiber LTP in CA3 of hippocampus, but activating cAMP-PKA and cGMP-PKG prevents this.

Neurobiol Dis

Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America. Electronic address:

Published: October 2022

Early cognitive impairment in Alzheimer's disease may result in part from synaptic dysfunction caused by the accumulation oligomeric assemblies of amyloid β-protein (Aβ). Changes in hippocampal function seem critical for cognitive impairment in early Alzheimer's disease (AD). Diffusible oligomers of Aβ (oAβ) have been shown to block canonical long-term potentiation (LTP) in the CA1 area of hippocampus, but whether there is also a direct effect of oAβ on synaptic transmission and plasticity at synapses between mossy fibers (axons) from the dentate gyrus granule cells and CA3 pyramidal neurons (mf-CA3 synapses) is unknown. Studies in APP transgenic mice have suggested an age-dependent impairment of mossy fiber LTP. Here we report that although endogenous AD brain-derived soluble oAβ had no effect on mossy-fiber basal transmission, it strongly impaired paired-pulse facilitation in the mossy fiber pathway and presynaptic mossy fiber LTP (mf-LTP). Selective activation of both β1 and β2 adrenergic receptors and their downstream cAMP/PKA signaling pathway prevented oAβ-mediated inhibition of mf-LTP. Unexpectedly, activation of the cGMP/PKG signaling pathway also prevented oAβ-impaired mf-LTP. Our results reveal certain specific pharmacological targets to ameliorate human oAβ-mediated impairment at the mf-CA3 synapse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9809147PMC
http://dx.doi.org/10.1016/j.nbd.2022.105816DOI Listing

Publication Analysis

Top Keywords

mossy fiber
16
fiber ltp
12
cognitive impairment
8
alzheimer's disease
8
signaling pathway
8
pathway prevented
8
mossy
5
aβ oligomers
4
oligomers human
4
human brain
4

Similar Publications

Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.

View Article and Find Full Text PDF

Towards an Understanding of the Dentate Gyrus Hilus.

Hippocampus

January 2025

Department of Child and Adolescent Psychology, Neuroscience & Physiology, and Psychiatry and the Neuroscience Institute, New York University Grossman School of Medicine, New York University Langone Health, New York, New York, USA.

For many years, the hilus of the dentate gyrus (DG) was a mystery because anatomical data suggested a bewildering array of cells without clear organization. Moreover, some of the anatomical information led to more questions than answers. For example, it had been identified that one of the major cell types in the hilus, the mossy cell, innervates granule cells (GCs).

View Article and Find Full Text PDF

Introduction: We investigated whether the cerebellum develops neuropathology that correlates with well-accepted Alzheimer's disease (AD) neuropathological markers and cognitive status.

Methods: We studied cerebellar cytoarchitecture in a cohort (N = 30) of brain donors. In a larger cohort (N = 605), we queried whether the weight of the contents of the posterior fossa (PF), which contains primarily cerebellum, correlated with dementia status.

View Article and Find Full Text PDF

The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers.

View Article and Find Full Text PDF

Field EPSPs of Dentate Gyrus Granule Cells Studied by Selective Optogenetic Activation of Hilar Mossy Cells in Hippocampal Slices.

Hippocampus

January 2025

Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, New York, New York, USA.

Article Synopsis
  • Researchers explored how glutamatergic mossy cells (MCs) in the dentate gyrus (DG) connect to granule cells (GCs), using optogenetics to activate MC axons specifically.
  • They found that this optogenetic stimulation could elicit field excitatory postsynaptic potentials (fEPSPs) in GCs in the inner molecular layer (IML), which were consistent across the DG.
  • The fEPSPs recorded were relatively weak, showing low amplitude and minimal population spikes, indicating that the MC input to GCs is generally weak but widespread throughout the granule cell population.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!