Injectable intramyocardial biomaterials have promise to limit adverse ventricular remodeling through mechanical and biologic mechanisms. While some success has been observed by injecting materials to regenerate new tissue, optimal biomaterial stiffness to thicken and stiffen infarcted myocardium to limit adverse remodeling has not been determined. In this work, we present an in-vivo study of the impact of biomaterial stiffness over a wide range of stiffness moduli on ventricular mechanics. We utilized injectable methacrylated polyethylene glycol (PEG) hydrogels fabricated at 3 different mechanical moduli: 5 kPa (low), 25 kPa (medium/myocardium), and 250 kPa (high/supraphysiologic). We demonstrate that the supraphysiological high stiffness favorably alters post-infarct ventricular mechanics and prevents negative tissue remodeling. Lower stiffness materials do not alter mechanics and thus to be effective, must instead target biological reparative mechanisms. These results may influence rationale design criteria for biomaterials developed for infarct reinforcement therapy. STATEMENT OF SIGNIFICANCE: Acellular biomaterials for cardiac application can provide benefit via mechanical and biological mechanisms post myocardial infarction. We study the role of biomaterial mechanical characteristics on ventricular mechanics in myocardial infarcts. Previous studies have not measured the influence of injected biomaterials on ventricular mechanics, and consequently rational design criteria is unknown. By utilizing an in-vivo assessment of ventricular mechanics, we demonstrate that low stiffness biomaterial do not alter pathologic ventricular mechanics. Thus, to be effective, low stiffness biomaterials must target biological reparative mechanisms. Physiologic and supra-physiologic biomaterials favorably alter post-infarct mechanics and prevents adverse ventricular remodeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.07.006DOI Listing

Publication Analysis

Top Keywords

ventricular mechanics
28
biomaterial stiffness
12
ventricular
9
mechanics
9
stiffness
8
mechanics myocardial
8
infarct reinforcement
8
limit adverse
8
adverse ventricular
8
ventricular remodeling
8

Similar Publications

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

Heart failure (HF) remains a significant public health issue, with heart transplantation (HT) being the gold standard treatment for end-stage HF. The increasing use of mechanical circulatory support, particularly left ventricular assist devices (LVADs), as a bridge to transplant (BTT), presents new perspectives for increasingly complex clinical scenarios. This study aimed to compare long-term clinical outcomes in patients in heart failure with reduced ejection fraction (HFrEF) receiving an LVAD as BTT to those undergoing direct-to-transplant (DTT) without mechanical support, focusing on survival and post-transplant complications.

View Article and Find Full Text PDF

Acute cardiovascular disorders are incriminated in up to 33% of maternal deaths, and the presence of sickle cell anemia (SCA) aggravates the risk of peripartum complications. Herein, we present a 24-year-old Caribbean woman with known SCA who developed a vaso-occlusive crisis at 36 weeks of gestation that required emergency Cesarean section. In the early postpartum period, she experienced fever with rapid onset of acute respiratory distress in the context of COVID-19 infection that required tracheal intubation and mechanical ventilatory support with broad-spectrum antibiotics and blood exchange transfusion.

View Article and Find Full Text PDF

Heart and lung sharing the same anatomical space are influenced by each other. Spontaneous breathing induces dynamic changes in intrathoracic pressure, impacting cardiac function, particularly the right ventricle. In intensive care units (ICU), mechanical ventilation (MV) and therefore positive end-expiratory pressure (PEEP) are often applied, and this inevitably influences cardiac function.

View Article and Find Full Text PDF

Simulating the cardiac valves is one of the most complex tasks in cardiovascular modeling. As fluid-structure interaction simulations are highly computationally demanding, machine-learning techniques can be considered a good alternative. Nevertheless, it is necessary to design many aortic valve geometries to generate a training set.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!