Ciprofloxacin (CIP) a broad-spectrum antibiotic, is used extensively for the treatment of diverse infections and diseases of bacteria origin, and this includes infections caused by E. coli; P. aeruginosa; S. aureus; and MRSA. This extensive use of CIP has therefore led to an increase in resistance by these infection causing organisms. Nano delivery systems has recently proven to be a possible solution to resistance to these organisms. They have been applied as a strategy to improve the target specificity of CIP against infections and diseases caused by these organisms, thereby maximising the efficacy of CIP to overcome the resistance. Herein, we proffer a brief overview of the mechanisms of resistance; the causes of resistance; and the various approaches employed to overcome this resistance. The review then proceeds to critically evaluate various nano delivery systems including inorganic based nanoparticles; lipid-based nanoparticles; capsules, dendrimers, hydrogels, micelles, and polymeric nanoparticles; and others; that have been applied for the delivery of CIP against E. coli; P. aeruginosa; S. aureus; and MRSA infections. Finally, the review highlights future areas of research, for the optimisation of various nano delivery systems, to maximise the therapeutic efficacy of CIP against these organisms. This review confirms the potential of nano delivery systems, for addressing the challenges of resistance to caused by E. coli; P. aeruginosa; S. aureus; and MRSA to CIP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2022.07.003 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy.
Background/objectives: This study investigates for the first time the use of the prilling technique in combination with solvent evaporation to produce nano- and submicrometric PLGA particles to deliver properly an active pharmaceutical ingredient. Curcumin (CCM), a hydrophobic compound classified under BCS (Biopharmaceutics Classification System) class IV, was selected as the model drug.
Methods: Key process parameters, including polymer concentration, solvent type, nozzle size, and surfactant levels, were optimized to obtain stable particles with a narrow size distribution determined by DLS analysis.
Pharmaceutics
January 2025
Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China.
: (PG) has been widely researched as a conductant drug for the treatment of lung diseases by ancient and modern traditional Chinese medicine (TCM) practitioners. Inspired by the mechanism and our previous finding about fructans and fructooligosaccharides from (FFPG), we developed a nano drug delivery system (NDDS) targeting lung cancer. The aim was to improve the efficiency of the liposomal delivery of Paclitaxel (PTX) and enhance the anti-tumor efficacy.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, University of Huddersfield, Huddersfield HD1 3DH, UK.
Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs).
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia.
: The tocotrienol-rich fraction (TRF) is a lipid-soluble vitamin that has good antioxidant and anti-inflammatory properties. The TRF is widely studied as a potential treatment for various diseases, including bone diseases. However, its application is limited due to its poor oral bioavailability profile, warranting an innovative approach to overcome its pharmacokinetic limitations.
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!