Novel KTO/BiOCl nanostructured photocatalysts with various weight proportions were synthesized using a simple hydrothermal process. The as-prepared nanostructured composite catalysts were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, UV-vis diffused reflectance spectroscopy, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy with high resolution, X-ray photoelectron spectroscopy, and photoluminescence (PL). The photocatalytic activity of prepared catalysts was examined using Rhodamine B (RhB) and Congo Red (CR) as the aimed pollutants. BiOCl nanoparticles were distributed uniformly on the surface of the KTiO nanobelts. The optical properties showed that the layered titanate with BiOCl nanostructured photocatalyst displayed improved photoresponsivity due to the narrowed bandgap. The PL results showed that the greater inhibition of the electron-hole recombination process and KTO/BiOCl with a mass proportion of 20% revealed the most favorable photocatalytic behavior. The rate constant of RhB and CR degradation was five times as high as that of the bare BiOCl and titanate. The superior photocatalytic performance was attributed to the advancement of heterojunction between the KTO nanobelt and BiOCl. The KTO/BiOCl nanostructure is a promising visible, active photocatalyst, and the photocatalytic mechanism is discussed using the possible band structures of BiOCl and KTO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135659 | DOI Listing |
J Transl Med
January 2025
Dental School, The University of Western Australia, 17 Monash Avenue, Nedlands, WA, 6009, Australia.
Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Operative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
Background: This in vitro study evaluated the efficacy of professional and home-use fluoride regimens for protecting irradiated enamel, undergoing pH cycling resembling xerostomia.
Methods: Sixty human premolar teeth were irradiated with a total dose of 70 Gy and subsequently sectioned into 3 × 3 cm enamel slabs. These slabs were randomly distributed into five groups (n = 12 per group): professional-use groups received fluoride varnish either weekly (FV1) or biweekly (FV2); home-use groups applied 5000 ppm (FT5) or 1450 ppm (FT) fluoride toothpaste; and a control group (control) received no treatment.
Nature
January 2025
Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.
The oxygen-sensitive molybdenum-dependent nitrogenase of Azotobacter vinelandii is protected from oxidative damage by a reversible 'switch-off' mechanism. It forms a complex with a small ferredoxin, FeSII (ref. ) or the 'Shethna protein II', which acts as an O sensor and associates with the two component proteins of nitrogenase when its [2Fe:2S] cluster becomes oxidized.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
The low reduction potentials required for the reduction of dinitrogen (N) render metal-based nitrogen-fixation catalysts vulnerable to irreversible damage by dioxygen (O). Such O sensitivity represents a major conundrum for the enzyme nitrogenase, as a large fraction of nitrogen-fixing organisms are either obligate aerobes or closely associated with O-respiring organisms to support the high energy demand of catalytic N reduction. To counter O damage to nitrogenase, diazotrophs use O scavengers, exploit compartmentalization or maintain high respiration rates to minimize intracellular O concentrations.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.
Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!