Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control.

Prog Lipid Res

Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.

Published: November 2022

Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of traits of farmed animals is also discussed along with DGATs in various other eukaryotic organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plipres.2022.101181DOI Listing

Publication Analysis

Top Keywords

properties physiological
12
acyl-coadiacylglycerol acyltransferase
8
physiological roles
8
metabolic engineering
8
therapeutic applications
8
dgat
7
acyltransferase properties
4
roles metabolic
4
engineering intentional
4
intentional control
4

Similar Publications

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

Selection of In Vivo Relevant Dissolution Test Parameters for the Development of Cannabidiol Formulations with Enhanced Oral Bioavailability.

Pharmaceutics

January 2025

Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium.

Cannabidiol (CBD) shows interesting therapeutic properties but has yet to demonstrate its full potential in clinical trials partly due to its low solubility in physiologic media. Two different formulations of CBD (amorphous and lipid-based) have been optimized and enable an increase in bioavailability in piglets. In vivo studies are time-consuming, costly and life-threatening.

View Article and Find Full Text PDF

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

The Application of Olive-Derived Polyphenols on Exercise-Induced Inflammation: A Scoping Review.

Nutrients

January 2025

Cambridge Centre for Sport and Exercise Sciences (CCSES), Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK.

Background/objectives: There is current scientific interest pertaining to the therapeutic effects of olive-derived polyphenols (ODPs), in particular their associated anti-inflammatory properties, following the wealth of research surrounding the physiological impact of the Mediterranean Diet (MD). Despite this association, the majority of the current literature investigates ODPs in conjunction with metabolic diseases. There is limited research focusing on ODPs and acute inflammation following exercise, regardless of the knowledge surrounding the elevated inflammatory response during this time.

View Article and Find Full Text PDF

Prenatal hypoxia (PH) is a key factor in the development of long-term cardiovascular disorders, which are caused by various mechanisms of endothelial dysfunction (ED), including those associated with NO deficiency. This emphasizes the potential of therapeutic agents with NO modulator properties, such as Thiotriazoline, Angiolin, Mildronate, and L-arginine, in the treatment of PH. Pregnant female rats were given a daily intraperitoneal dose of 50 mg/kg of sodium nitrite starting on the 16th day of pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!