Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Resistive random-access memories (RRAMs) based on metal-oxide thin films have been studied extensively for application as synaptic devices in neuromorphic systems. The use of graphene oxide (GO) as a switching layer offers an exciting alternative to other materials such as metal-oxides. We present a newly developed RRAM device fabricated by implementing highly-packed GO layers on a highly doped Si wafer to yield a gradual modulation of the memory as a function of the number of input pulses. By using flow-enabled self-assembly, highly uniform GO thin films can be formed on flat Si wafers in a rapid and simple process. The switching mechanism was explored through proposed scenarios reconstructing the density change of the spcluster in the GO layer, resulting in a gradual conductance modulation. We analyzed that the current in a low resistance state could flow by tunneling or hopping via clusters because the distance between the spclusters in closely-packed GO layers is short. Finally, through a pattern-recognition simulation with a Modified National Institute of Standards and Technology database, the feasibility of using close-packed GO layers as synapse devices was successfully demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac805d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!