In this work, we developed a novel electrochemiluminescence (ECL) biosensor for ulinastatin (UTI) detection based on self-luminescent metal-organic framework (L-MOF) nanomaterials. The L-MOFs could be simply prepared by one-pot methods using Eu and 4,4',4″-s-triazine-1,3,5-triyltri-m-aminobenzoic acid (HTATAB) as the metallic center and organic ligand, respectively. The Eu-TATAB exhibited high efficiency and stable ECL performance when using KSO as coreactant. For the established biosensor, Eu-TATAB was both used as the ECL chromophore and protein carrier due to its outstanding biocompatibility and large superficial area, which could load sufficient antibodies to link with antigen in the biosensor for subsequent detection. The established sandwich ECL biosensor showed a wide linear range of 0.1 ng mL - 10 ng mL and a low limit of detection of 9.7 pg mL for UTI detection. In addition, the developed ECL biosensor could also be successfully applied to the real UTI sample determination in serum. The reported biosensor strategy could provide a guide for developing more other novel and promising high-performance ECL nanomaterials, and also be used as a potential method for ultrasensitive UTI detection in disease research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2022.123726DOI Listing

Publication Analysis

Top Keywords

ecl biosensor
12
uti detection
12
novel electrochemiluminescence
8
detection
6
ecl
6
biosensor
6
self-luminescent europium
4
europium based
4
based metal
4
metal organic
4

Similar Publications

, a significant zoonotic pathogen, annually caused substantial economic losses in the swine industry and had intensified threat to public health due to the recent emergence of human-associated clade. In this study, we discovered that the rare-earth metal-based metal-organic frameworks (Y-BTC) possessed excellent ECL capabilities. After prereduction at high voltage, its ECL intensity was enhanced by two times.

View Article and Find Full Text PDF

Serum amyloid A (SAA) is a key biomarker for diagnosing inflammatory responses in diseases like influenza and COVID-19. An electrochemiluminescence (ECL) biosensor has been constructed for signal enhancement in SAA detection by encapsulating 4,4',4″,4‴-(1,3,6,8-pyrenetetrayl) tetrakis-benzoic acid (TBAPy) into liposomes. Such biomimetic encapsulation shields the biologically important membrane to avoid aggregation of TBAPy and prevents quenching.

View Article and Find Full Text PDF

Potential-resolved electrochemiluminescent immunoassay based on dual co-reactants regulation.

Biosens Bioelectron

December 2024

Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. Electronic address:

Multi-signal-based self-calibrating biosensors have become a research focus due to their superior accuracy and sensitivity in recent years. Herein, the potential-resolved differential ECL immunoassay based on dual co-reactants regulation was developed. Meso-tetra(4-carboxyphenyl)porphyrin (TCPP) functionalized zirconium dioxide (ZrO) composites (TCPP-ZrO) was first synthesized using TCPP as the luminophore and ZrO as the enhancer and stabilizer.

View Article and Find Full Text PDF

Dopamine (DA) is an important catecholamine neurotransmitter and its abnormal concentration is closely related to diseases such as hypertension, Parkinson's disease and schizophrenia. Due to the advantages of high sensitivity and fast response for electrochemiluminescence (ECL), developing ECL sensors for detecting DA was very critical in clinical diagnosis. ECL resonance energy transfer (ECL-RET) was an effective signaling mechanism.

View Article and Find Full Text PDF

Oseltamivir is a drug that has been widely used to prevent and treat influenza A and B. In this work, an ultrasensitive, simple, and novel electrochemiluminescence (ECL) sensor combined with molecularly imprinted polymers (MIP-ECL) based on a graphene-like two-dimensional material, Mxene quantum dots (MQDs) was constructed to selectively detect oseltamivir. A molecularly imprinted polymer membrane containing an oseltamivir template was constructed by electropolymerization and elution of modified MQDs on a glassy carbon electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!