Poly 2-vinyl-4,4-dimethylazlactone (PVDMA) has received much attention as a "reactive platform" to prepare charge-shifting polycations via post-polymerization modification with tertiary amines that possess primary amine or hydroxyl reactive handles. Upon hydrolysis of the resulting amide or ester linkages, the polymers can undergo a gradual transition in net charge from cationic to anionic. Herein, a systematic investigation of the hydrolysis rate of PVDMA-derived charge-shifting polymers is described. PVDMA is modified with tertiary amines bearing either primary amine, hydroxyl, or thiol reactive handles. The resulting polymers possess tertiary amine side chains connected to the backbone via amide, ester, or thioester linkages. The hydrolysis rates of each PVDMA derivative are monitored at 25 and 50 °C at pH values of 5.5, 7.5, and 8.5, respectively. While the hydrolysis rate of the amide-functionalized PVDMA is negligible over the period investigated, the hydrolysis rates of the ester- and thioester-functionalized PVDMA increase with increasing temperature and pH. Interestingly, the hydrolysis rate of the thioester-functionalized PVDMA appears to be more rapid than the ester-functionalized PVDMA at all pH values and temperatures investigated. It is believed that these results can be utilized to inform the future preparation of PVDMA-based charge-shifting polymers for biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780167PMC
http://dx.doi.org/10.1002/marc.202200420DOI Listing

Publication Analysis

Top Keywords

charge-shifting polymers
12
hydrolysis rate
12
investigation hydrolysis
8
tertiary amines
8
primary amine
8
amine hydroxyl
8
reactive handles
8
amide ester
8
hydrolysis rates
8
thioester-functionalized pvdma
8

Similar Publications

Poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) is a promising charge-shifting polycation with the capacity to form a range of morphologically distinct polyelectrolyte assemblies. Nevertheless, the basic character of the monomer and its hydrolytic instability impedes its controlled synthesis to higher molecular weight (MW). Herein, the reversible addition-fragmentation chain transfer polymerization of DMAEA is reported using a tert-butanol/V70 initiator/trithiocarbonate-based chain transfer agent (CTA) polymerization setup.

View Article and Find Full Text PDF

pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release.

Nano Res

January 2023

Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China.

Stimuli-responsive polymers are promising to achieve targeted delivery, improved stability during circulation, and controlled release of therapeutic and diagnostic agents. Among them, pH-responsive polymeric nanocarriers have attracted significant attention as pH varies in different body fluids (e.g.

View Article and Find Full Text PDF

One of the most effective treatments for diabetes is to design a glucose-regulated insulin (INS) delivery system that could adjust the INS release time and rate to reduce diabetes-related complications. Here, mixed multiple layer-by-layer (mmLbL)-INS microspheres were developed for glucose-mediated INS release and an enhanced hypoglycemic effect for diabetes care. To achieve ultrafast glucose-activated INS release, glucose oxidase (GOx) was assembled with a positively charged polymer and modified on INS LbL.

View Article and Find Full Text PDF

Poly 2-vinyl-4,4-dimethylazlactone (PVDMA) has received much attention as a "reactive platform" to prepare charge-shifting polycations via post-polymerization modification with tertiary amines that possess primary amine or hydroxyl reactive handles. Upon hydrolysis of the resulting amide or ester linkages, the polymers can undergo a gradual transition in net charge from cationic to anionic. Herein, a systematic investigation of the hydrolysis rate of PVDMA-derived charge-shifting polymers is described.

View Article and Find Full Text PDF

In contrast to the processes controlling the complexation, targeting and uptake of polycationic gene delivery vectors, the molecular mechanisms regulating their cytoplasmic dissociation remains poorly understood. Upon cytosolic entry, vectors become exposed to a complex, concentrated mixture of molecules and biomacromolecules. In this report, we characterise the cytoplasmic interactome associated with polycationic vectors based on poly(dimethylaminoethyl methacrylate) (PDMAEMA) and poly(2-methacrylolyloxyethyltrimethylammonium chloride) (PMETAC) brushes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!