Grab regulates transferrin receptor recycling and iron uptake in developing erythroblasts.

Blood

Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection, Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China.

Published: September 2022

Developing erythroblasts acquire massive amounts of iron through the transferrin (Tf) cycle, which involves endocytosis, sorting, and recycling of the Tf-Tf receptor (Tfrc) complex. Previous studies on the hemoglobin-deficit (hbd) mouse have shown that the exocyst complex is indispensable for the Tfrc recycling; however, the precise mechanism underlying the efficient exocytosis and recycling of Tfrc in erythroblasts remains unclear. Here, we identify the guanine nucleotide exchange factor Grab as a critical regulator of the Tf cycle and iron metabolism during erythropoiesis. Grab is highly expressed in differentiating erythroblasts. Loss of Grab diminishes the Tfrc recycling and iron uptake, leading to hemoglobinization defects in mouse primary erythroblasts, mammalian erythroleukemia cells, and zebrafish embryos. These defects can be alleviated by supplementing iron together with hinokitiol, a small-molecule natural compound that can mediate iron transport independent of the Tf cycle. Mechanistically, Grab regulates the exocytosis of Tfrc-associated vesicles by activating the GTPase Rab8, which subsequently promotes the recruitment of the exocyst complex and vesicle exocytosis. Our results reveal a critical role for Grab in regulating the Tf cycle and provide new insights into iron homeostasis and erythropoiesis.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.2021015189DOI Listing

Publication Analysis

Top Keywords

grab regulates
8
recycling iron
8
iron uptake
8
developing erythroblasts
8
exocyst complex
8
tfrc recycling
8
iron
7
grab
6
recycling
5
erythroblasts
5

Similar Publications

Live imaging of paracrine signaling: Advances in visualization and tracking techniques.

Cell Struct Funct

January 2025

Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University.

Live imaging techniques have revolutionized our understanding of paracrine signaling, a crucial form of cell-to-cell communication in biological processes. This review examines recent advances in visualizing and tracking paracrine factors through four key stages: secretion from producing cells, diffusion through extracellular space, binding to target cells, and activation of intracellular signaling within target cells. Paracrine factor secretion can be directly visualized by fluorescent protein tagging to ligand, or indirectly by visualizing the cleavage of the transmembrane pro-ligands or plasma membrane fusion of endosomes comprising the paracrine factors.

View Article and Find Full Text PDF

The co-existence and co-transmission of neuropeptides and small molecule neurotransmitters within individual neuron represent a fundamental characteristic observed across various species. However, the differences regarding their in vivo spatiotemporal dynamics and underlying molecular regulation remain poorly understood. Here, we develop a GPCR-activation-based (GRAB) sensor for detecting short neuropeptide F (sNPF) with high sensitivity and spatiotemporal resolution.

View Article and Find Full Text PDF

Red-shifted GRAB acetylcholine sensors for multiplex imaging .

bioRxiv

December 2024

State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China.

The neurotransmitter acetylcholine (ACh) is essential in both the central and peripheral nervous systems. Recent studies highlight the significance of interactions between ACh and various neuromodulators in regulating complex behaviors. The ability to simultaneously image ACh and other neuromodulators can provide valuable information regarding the mechanisms underlying these behaviors.

View Article and Find Full Text PDF

Chronic Radium-226 Bioaccumulation and Toxicity in the Aquatic Invertebrate Daphnia magna.

Arch Environ Contam Toxicol

January 2025

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.

Mining operations in Canada, including uranium mining and milling, generate by-products containing radionuclides, including radium-226 (Ra), a long-lived, bioaccumulative calcium (Ca) analog. Despite strict discharge regulations, there is limited evidence to suggest that current thresholds for Ra adequately protect aquatic organisms. Furthermore, Canada lacks a federal water quality guideline for Ra, underscoring the need for protective limits to safeguard aquatic ecosystems.

View Article and Find Full Text PDF

Land use change threatens global biodiversity and compromises ecosystem functions, including pollination and food production. Reduced taxonomic α-diversity is often reported under land use change, yet the impacts could be different at larger spatial scales (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!