A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermoreversible Reverse-Phase-Shift Foam for Treatment of Noncompressible Torso Hemorrhage, a Safety Trial in a Porcine Model. | LitMetric

Introduction: Noncompressible torso hemorrhage is the leading cause of exsanguination on the battlefield. A self-expanding, intraperitoneal deployed, thermoreversible foam has been developed that can be easily administered by a medic in austere settings to temporarily tamponade noncompressible torso hemorrhage. The purpose of this study was to assess the long-term safety and physical characteristics of using Fast Onset Abdominal Management (FOAM; Critical Innovations LLC) in swine.

Materials And Methods: Yorkshire swine (40-60 kg) were sedated, intubated, and placed on ventilatory support. An external jugular catheter was placed for sampling of blood. Continuous heart rate, temperature, saturation of peripheral oxygen, end-tidal carbon dioxide, and peak airway pressures were monitored for a 4-hour period after intervention (i.e., FOAM agent injection or a sham introducer without agent delivery). The FOAM agent was injected to obtain an intra-abdominal pressure of 60 mmHg for at least 10 minutes. After 4 hours, the animals were removed from ventilatory support and returned to their housing for a period of 7-14 days. Group size analysis was not performed, as this was a descriptive safety study. Blood samples were obtained at baseline and at 1-hour post-intervention and then on days 1, 3, 7, and 14. Euthanasia, necropsy, and harvesting of samples for histologic analysis (from kidneys, terminal ilium, liver, pancreas, stomach, spleen, and lungs) were performed upon expiration. Histologic scoring for evidence of ischemia, necrosis, and abdominal compartment sequela was blinded and reported by semi-quantitative scale (range 0-4; 0 = no change, 1 = minimal, 2 = mild, 3 = moderate, and 4 = marked). Oregon Health & Science University's Institutional Animal Care and Use Committee, as well as the U.S. Army Animal Care and Use Review Office, approved this protocol before the initiation of experiments (respectively, protocol numbers IP00003591 and MT180006.e002).

Results: Five animals met a priori inclusion criteria, and all of these survived to their scheduled endpoints. Two animals received sham injections of the FOAM agent (one euthanized on day 7 and one on day 14), and three animals received FOAM agent injections (one euthanized on day 7 and two on day 14). A transitory increase in creatinine and lactate was detected during the first day in the FOAM injected swine but resolved by day 3. No FOAM agent was observed in the peritoneal cavity upon necropsy at day 7 or 14. Histologic data revealed no clinically relevant differences in any organ system between intervention and control animals upon sacrifice at day 7 or 14.

Conclusions: This study describes the characteristics, survival, and histological analysis of using FOAM in a porcine model. In our study, FOAM reached the desired intra-abdominal pressure endpoint while not significantly altering basic hematologic parameters, except for transient elevations of creatinine and lactate on day 1. Furthermore, there was no clinical or histological relevant evidence of ischemia, necrosis, or intra-abdominal compartment syndrome. These results provide strong support for the safety of the FOAM device and will support the design of further regulatory studies in swine and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10629983PMC
http://dx.doi.org/10.1093/milmed/usac206DOI Listing

Publication Analysis

Top Keywords

foam agent
20
foam
12
noncompressible torso
12
torso hemorrhage
12
day
9
porcine model
8
ventilatory support
8
intra-abdominal pressure
8
evidence ischemia
8
ischemia necrosis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!