Many high-performance DTA deep learning models have been proposed, but they are mostly black-box and thus lack human interpretability. Explainable AI (XAI) can make DTA models more trustworthy, and allows to distill biological knowledge from the models. Counterfactual explanation is one popular approach to explaining the behaviour of a deep neural network, which works by systematically answering the question "How would the model output change if the inputs were changed in this way?". We propose a multi-agent reinforcement learning framework, Multi-Agent Counterfactual Drug-target binding Affinity (MACDA), to generate counterfactual explanations for the drug-protein complex. Our proposed framework provides human-interpretable counterfactual instances while optimizing both the input drug and target for counterfactual generation at the same time. We benchmark the proposed MACDA framework using the Davis and PDBBind dataset and find that our framework produces more parsimonious explanations with no loss in explanation validity, as measured by encoding similarity. We then present a case study involving ABL1 and Nilotinib to demonstrate how MACDA can explain the behaviour of a DTA model in the underlying substructure interaction between inputs in its prediction, revealing mechanisms that align with prior domain knowledge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2022.3190266 | DOI Listing |
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFOncogene
January 2025
Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Pancreatic Surgery, Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China.
Previous studies have found that dyslipidemia is a risk factor for pancreatic cancer (PC), and that lipid-lowering drugs may reduce the risk of PC. However, it is not clear whether dyslipidemia causes PC. The Mendelian randomization (MR) study aimed to investigate the causal role of lipid traits in pancreatic cancer and to assess the potential impact of lipid-lowering drug targets on pancreatic cancer.
View Article and Find Full Text PDFSci Rep
January 2025
The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Neuropsychiatry, Dongguk University, School of Medicine, Seoul, Republic of Korea.
Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!