Comprehensive metabolome analysis of intracellular metabolites in cultured cells.

STAR Protoc

Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan. Electronic address:

Published: September 2022

Capillary electrophoresis mass spectrometry (CE-MS) can measure the intracellular amount of highly polar and charged metabolites; liquid chromatography mass spectrometry (LC-MS) can quantify hydrophobic metabolites. A comprehensive metabolome analysis requires independent sample preparation for LC-MS and CE-MS. Here, we present a protocol to prepare for sequentially analyzing the metabolites from one sample. Here we describe the steps for breast cancer cell lines, MCF-7 cells, but the protocol can be applied to other cell types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283946PMC
http://dx.doi.org/10.1016/j.xpro.2022.101531DOI Listing

Publication Analysis

Top Keywords

comprehensive metabolome
8
metabolome analysis
8
mass spectrometry
8
analysis intracellular
4
metabolites
4
intracellular metabolites
4
metabolites cultured
4
cultured cells
4
cells capillary
4
capillary electrophoresis
4

Similar Publications

Atherosclerosis is a major cause of morbidity and mortality worldwide; in Israel, ischemic heart disease is the second leading cause of death for both genders aged 45 and above. Atherosclerosis involves stiffening of the arteries due to the accumulation of lipids and oxidized lipids on the blood vessel walls, triggering the development of artery plaque. Coronary artery disease (CAD) is the most common manifestation of atherosclerosis.

View Article and Find Full Text PDF

Comprehensive analysis of flower extracts: phytochemical composition and toxicity in zebrafish embryos.

Nat Prod Res

January 2025

Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil.

(L.) R. Br.

View Article and Find Full Text PDF

Integrated transcriptomics and metabolomics analyses provide new insights into cassava in response to nitrogen deficiency.

Front Plant Sci

January 2025

National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.

Nitrogen deficiency is a key constraint on crop yield. Cassava, the world's sixth-largest food crop and a crucial source of feed and industrial materials, can thrive in marginal soils, yet its yield is still significantly affected by limited nitrogen availability. Investigating cassava's response mechanisms to nitrogen scarcity is therefore essential for advancing molecular breeding and identifying nitrogen-efficient varieties.

View Article and Find Full Text PDF

A Comprehensive Understanding of Tea Metabolome: From Tea Plants to Processed Teas.

Annu Rev Food Sci Technol

January 2025

4Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea; email:

Tea () is one of the most popular nonalcoholic beverages in the world, second only to water. Six main types of teas are produced globally: green, white, black, oolong, yellow, and Pu-erh. Each type has a distinctive taste, quality, and cultural significance.

View Article and Find Full Text PDF

Rehabilomics Strategies Enabled by Cloud-Based Rehabilitation: Scoping Review.

J Med Internet Res

January 2025

Department of Physical Medicine and Rehabilitation, Korea University Anam Hospital, Seoul, Republic of Korea.

Background: Rehabilomics, or the integration of rehabilitation with genomics, proteomics, metabolomics, and other "-omics" fields, aims to promote personalized approaches to rehabilitation care. Cloud-based rehabilitation offers streamlined patient data management and sharing and could potentially play a significant role in advancing rehabilomics research. This study explored the current status and potential benefits of implementing rehabilomics strategies through cloud-based rehabilitation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!