Continuous industrial development has increased the demand of energy. Inevitably, the development of energy sources is steadily progressing using various methods. Rather than establishing a new energy source, a system for storing waste heat generated by industry has now been accepted as a useful strategy. Among such systems, the hydration and dehydration reactions of MgO/Mg(OH) are eco-friendly, have relatively low toxicity and risk, and have a large reserves. Therefore, it is a promising candidate for a heat-storage system. In this study, ultrahigh-porosity particles are used to maximize the heat-storage efficiency of pure MgO. Due to its large surface area, the heat storage rate is 90.3% of the theoretical value and the reaction rate is very high. In addition, as structural collapse, likely to be caused by volume changes between reactions, is blocked as the porous region is filled and emptied, the cycle stability is secured. Ultrahigh-porosity MgO microparticles can be used to build eco-friendly heat-storage systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202204775 | DOI Listing |
J Environ Manage
January 2025
Department of Global Smart City, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea. Electronic address:
Water Res
February 2024
Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea. Electronic address:
Phosphorus is a nonrenewable material with a finite supply on Earth; however, due to the rapid growth of the manufacturing industry, phosphorus contamination has become a global concern. Therefore, this study highlights the remarkable potential of ranunculus-like MgO (MO4-MO6) as superior adsorbents for phosphate removal and recovery. Furthermore, MO6 stands out with an impressive adsorption capacity of 596.
View Article and Find Full Text PDFAdv Mater
October 2023
Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea.
Continuous industrial development has increased the demand of energy. Inevitably, the development of energy sources is steadily progressing using various methods. Rather than establishing a new energy source, a system for storing waste heat generated by industry has now been accepted as a useful strategy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!