Facile Synthesis of Ag/Carbon Quantum Dots/Graphene Composites for Highly Conductive Water-Based Inks.

ACS Appl Mater Interfaces

Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, P. R. China.

Published: July 2022

The development of graphene conductive inks with a high conductivity and dispersion stability in water poses considerable challenges. Herein, a highly conductive Ag/carbon quantum dots (CQDs)/graphene (G) composite with good dispersity and stability in water was prepared for the first time through the in situ photoreduction of AgNO and deposition of Ag onto graphene nanosheets obtained via CQD-assisted liquid-phase exfoliation. Ag nanoparticles with an average size of ∼1.88 nm were uniformly dispersed on graphene nanosheets. The Ag/CQDs/G composite exhibited good dispersity and stability in water for 30 days. The formation mechanism of the Ag/CQDs/G composites was also discussed. CQDs played a vital role in coordinating with Ag and reducing it under visible light conditions. The addition of only 1.58 wt % of Ag NPs to the CQDs/G film resulted in a significant decrease in the electrical resistivity by approximately 89.5%, reaching a value of 0.054 Ω cm for a 40 μm thick Ag/CQDs/G film. A low resistivity of 2.15 × 10 Ω cm for the Ag/CQDs/G film was achieved after rolling compression with a compression ratio of 78%. The Ag/CQDs/G film exhibited good conductivity and durability when bent, rolled, or twisted. Moreover, the resistivity of the film displayed a slight deviation after 5000 bending cycles, indicating its outstanding stability. This study provides an efficient strategy for preparing graphene-based conductive composites with good dispersibility and stability in water as well as novel high-performance conductive inks for application in flexible printed electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c06298DOI Listing

Publication Analysis

Top Keywords

stability water
16
ag/cqds/g film
12
ag/carbon quantum
8
highly conductive
8
conductive inks
8
good dispersity
8
dispersity stability
8
graphene nanosheets
8
exhibited good
8
conductive
5

Similar Publications

Development of a Zeolitic Imidazolate Framework Based Superhydrophobic Surface with Abrasion Resistance, Corrosion Protection, and Anti-icing.

Langmuir

March 2025

Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.

Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.

View Article and Find Full Text PDF

Infrared Spectroscopy of [HO-NO]-(HO) ( = 1 and 2): Microhydration Effects on the Hemibond.

J Phys Chem A

March 2025

Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

The hemibond, a nonclassical covalent bond involving three electrons shared between two centers, has attracted considerable attention due to its significance in radiation chemistry. Water radical cation clusters, [HO-X], exhibit two primary bonding motifs: the hemibond and the hydrogen bond. Although hydrogen bond formation typically dominates, recent studies have identified instances of hemibond formation in some systems involving water molecules.

View Article and Find Full Text PDF

Cesium-lead halide perovskite nanomaterials have been considered new-generation emitters that can meet the requirements of high photoluminescence efficiency and the high color standard of Rec. 2020. However, their practical application is currently hindered by the challenge of achieving better stability and growth in green solvents.

View Article and Find Full Text PDF

Interstitial lung disease (ILD) consists of a group of immune-mediated disorders that can cause inflammation and progressive fibrosis of the lungs, representing an area of unmet medical need given the lack of disease-modifying therapies and toxicities associated with current treatment options. Tissue-specific splice variants (SVs) of human aminoacyl-tRNA synthetases (aaRSs) are catalytic nulls thought to confer regulatory functions. One example from human histidyl-tRNA synthetase (HARS), termed HARS because the splicing event resulted in a protein encompassing the WHEP-TRS domain of HARS (a structurally conserved domain found in multiple aaRSs), is enriched in human lung and up-regulated by inflammatory cytokines in lung and immune cells.

View Article and Find Full Text PDF

Effect of Ion-Specific Hydration Forces on the Stability of Water Films on Calcite Surfaces.

Langmuir

March 2025

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.

The hydration force is indispensable for understanding short-range interfacial forces in aqueous systems. Perturbation of the hydration structure by ions generates an ion-specific hydration force. Surface-force measurements on calcite surfaces have suggested that Na decreases the repulsive hydration force by directly adsorbing the surface and disrupting the hydration layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!