Background: Machine learning (ML) and deep learning (DL) methods have recently garnered a great deal of attention in the field of cancer research by making a noticeable contribution to the growth of predictive medicine and modern oncological practices. Considerable focus has been particularly directed toward hematologic malignancies because of the complexity in detecting early symptoms. Many patients with blood cancer do not get properly diagnosed until their cancer has reached an advanced stage with limited treatment prospects. Hence, the state-of-the-art revolves around the latest artificial intelligence (AI) applications in hematology management.

Objective: This comprehensive review provides an in-depth analysis of the current AI practices in the field of hematology. Our objective is to explore the ML and DL applications in blood cancer research, with a special focus on the type of hematologic malignancies and the patient's cancer stage to determine future research directions in blood cancer.

Methods: We searched a set of recognized databases (Scopus, Springer, and Web of Science) using a selected number of keywords. We included studies written in English and published between 2015 and 2021. For each study, we identified the ML and DL techniques used and highlighted the performance of each model.

Results: Using the aforementioned inclusion criteria, the search resulted in 567 papers, of which 144 were selected for review.

Conclusions: The current literature suggests that the application of AI in the field of hematology has generated impressive results in the screening, diagnosis, and treatment stages. Nevertheless, optimizing the patient's pathway to treatment requires a prior prediction of the malignancy based on the patient's symptoms or blood records, which is an area that has still not been properly investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328784PMC
http://dx.doi.org/10.2196/36490DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
intelligence applications
8
applications hematology
8
current practices
8
hematologic malignancies
8
blood cancer
8
field hematology
8
cancer
5
review artificial
4
hematology
4

Similar Publications

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.

View Article and Find Full Text PDF

Background: Depression significantly impacts an individual's thoughts, emotions, behaviors, and moods; this prevalent mental health condition affects millions globally. Traditional approaches to detecting and treating depression rely on questionnaires and personal interviews, which can be time consuming and potentially inefficient. As social media has permanently shifted the pattern of our daily communications, social media postings can offer new perspectives in understanding mental illness in individuals because they provide an unbiased exploration of their language use and behavioral patterns.

View Article and Find Full Text PDF

The integration of artificial intelligence (AI) into health communication systems has introduced a transformative approach to public health management, particularly during public health emergencies, capable of reaching billions through familiar digital channels. This paper explores the utility and implications of generalist conversational artificial intelligence (CAI) advanced AI systems trained on extensive datasets to handle a wide range of conversational tasks across various domains with human-like responsiveness. The specific focus is on the application of generalist CAI within messaging services, emphasizing its potential to enhance public health communication.

View Article and Find Full Text PDF

Background: Patient engagement is a critical but challenging public health priority in behavioral health care. During telehealth sessions, health care providers need to rely predominantly on verbal strategies rather than typical nonverbal cues to effectively engage patients. Hence, the typical patient engagement behaviors are now different, and health care provider training on telehealth patient engagement is unavailable or quite limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!