Mungbean is an important legume mainly cultivated in Southeast Asia known for cheap source of food protein. Yellow mosaic disease (YMD) of mungbean is one of the most damaging diseases caused by mungbean yellow mosaic virus (MYMV) and mungbean yellow mosaic India virus (MYMIV) in India. The genetic basis of YMD resistance of mungbean is not well studied yet. Our present studies aimed to explore the genetic basis of YMD resistance through molecular, biochemical and metabolomics approach. Molecular analysis of YMV-infected mungbean plant materials revealed the presence of MYMIV. Chlorophyll contents were estimated as mosaic symptoms that cause chlorosis and necrosis in infected leaves. Chlorophyll a, b and total chlorophyll content were significantly reduced by 27-55% in infected samples compared non-infected control samples. H NMR-based metabolomic profiling of virus-infected mungbean were carried out, and we found that vital changes occurred during the development of MYMIV infection in mungbean. A total of fifty metabolites were identified in mungbean leaf samples. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) separated the severely infected sample from the non-infected samples. Orthogonal partial least discrimination analysis (OPLS-DA) revealed significant differences in MYMIV-infected and non-infected control samples. The featured metabolites in MYMIV infected and control samples were amino acids, carbohydrates, and organic acids. Relative abundance of sucrose, γ-amino butyric acid (GABA), proline, alanine, phenylalanine, tryptophan, pyruvate, ascorbate, and citrates were found as differential metabolites. Our results suggest that metabolic changes in infected mungbean samples is related to the viral acquisition. The present study may help in better understanding the metabolic alterations during biotic stress in mungbean.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-04074-5DOI Listing

Publication Analysis

Top Keywords

yellow mosaic
16
mungbean
13
mungbean yellow
12
control samples
12
nmr-based metabolomic
8
metabolomic profiling
8
infected mungbean
8
mosaic india
8
india virus
8
genetic basis
8

Similar Publications

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

A Survey of Wild Indigenous Orchid Populations in Western Australia Reveals Spillover of Exotic Viruses.

Viruses

January 2025

School of Medical, Molecular and Forensic Sciences, College of Environmental and Life Sciences, Murdoch University, 90 South Street, Perth 6150, Australia.

is a terrestrial orchid endemic to southwestern Australia. The virus status of has not been studied. Eighty-three samples from 16 populations were collected, and sequencing was used to identify RNA viruses from them.

View Article and Find Full Text PDF

Protease activity of NIa-Pro determines systemic pathogenicity of clover yellow vein virus.

Virology

January 2025

Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China. Electronic address:

Clover yellow vein virus (ClYVV), a potyvirus that infects various dicotyledonous plants, poses a significant threat to the cultivation of legumes. Although potyviral NIa-Pro was extensively studied in viral infection cycle and host antiviral responses, the contribution of NIa-Pro protease activity to virus systemic symptoms has not yet been reported. In this study, we developed infectious clones of a ClYVV isolated from Pisum sativum.

View Article and Find Full Text PDF

Origins and Distribution of Panicum Mosaic Virus and Sugarcane Mosaic Virus on in Australia.

Phytopathology

January 2025

Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia;

is a premium turf grass in warm temperate and subtropical regions of the world and is the most important turf species in Australia based on the value of its production. A new disease called buffalo grass yellows (BGY) has become a problem on turf farms in Australia. We surveyed turf farms in New South Wales (NSW), Queensland (Qld) and Western Australia to determine whether panicum mosaic virus (PMV) and sugarcane mosaic virus (SCMV) were associated with BGY.

View Article and Find Full Text PDF

Pigeonpea (Cajanus cajan L.) plants exhibiting symptoms of yellow mosaic disease (YMD) were collected in winter 2023 from multiple agricultural fields of Kanpur, Sehore, and Madhubani, representing three different agro-ecological zones in India. The recorded disease incidence ranged from 3 to 5%, 1 to 4%, and 12 to 20% in these zones, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!