Proportionally converting the applied mechanical energy into photons by individual mechanoluminescent (ML) micrometer-sized particles opens a new way to develop intelligent electronic skins as it promises high-resolution stress distribution visualization and fast response. However, a big challenge for ML sensing technology is its low sensitivity in detecting stress. In this work, a novel stress distribution sensor with the detection sensitivity enhanced by two orders of magnitude is developed by combining a proposed near-distance ML imaging scheme with an improved mechano-to-photon convertor. The enhanced sensitivity is the main contributor to the realization of a maximum photon harvesting rate of ≈80% in the near-distance ML imaging scheme. The developed near-distance ML sensor shows a high sensitivity with a detection limit down to ≈kPa level, high spatial resolution of 254 dpi, and fast response with an interval of 3.3 ms, which allows for high-resolution and real-time visualization of complex mechanical actions such as irregular solid contacts or fluid impacts, and thus enables use in intelligent electronic skin, structural health monitoring, and human-computer interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202202864 | DOI Listing |
Biophys J
January 2025
Department of Pharmacology, University of California Davis, California 95616.
In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.
View Article and Find Full Text PDFCognition
January 2025
Institute of Systems and Information Engineering, University of Tsukuba, Ibaraki 305-8573, Japan. Electronic address:
Pain perception is not solely determined by noxious stimuli, but also varies due to other factors, such as beliefs about pain and its uncertainty. A widely accepted theory posits that the brain integrates prediction of pain with noxious stimuli, to estimate pain intensity. This theory assumes that the estimated pain value is adjusted to minimize surprise, mathematically defined as errors between predictions and outcomes.
View Article and Find Full Text PDFUltrasonics
January 2025
Medical Ultrasound Department for the Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China. Electronic address:
Shear Wave Elastography (SWE) is an imaging technique that detects shear waves generated by tissue excited by Acoustic Radiation Force (ARF), and characterizes the mechanical properties of soft tissue by analyzing the propagation velocity of shear wave. ARF induces a change in energy density through the nonlinear propagation of ultrasound waves, which drives the tissue to generate shear waves. However, the amplitude of shear waves generated by ARF is weak, and the shear waves are strongly attenuated in vivo.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!