While the inference of species trees from molecular sequences has become a common type of analysis in studies of species diversification, few programs so far allow for the use of single-nucleotide polymorphisms (SNPs) for the same purpose. In this book chapter, I discuss the use of the Bayesian program SNAPP, which infers the species tree by mathematically integrating over all possible genealogies at each SNP. In particular, I focus on a molecular clock model developed for SNAPP, allowing the inference of divergence times together with the species tree topology and the population size, directly from SNP datasets in variant call format. With the growing availability of SNP datasets for multiple closely related species, this approach is becoming increasingly relevant for the reconstruction of the temporal framework of recent species diversification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2429-6_2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!