Whether increased photosynthates under elevated atmospheric CO could translate into sustained biomass accumulation in forest trees remains uncertain. Here we demonstrate how tree radial growth is closely linked to litterfall dynamics, which enhances nitrogen recycling to support a sustained effect of CO fertilization on tree-ring growth. Our ten-year observations in two alpine treeline forests indicated that annual (or seasonal) stem radial increments generally had a positive relationship with the previous year's (or season's) litterfall and its associated nitrogen return and resorption. Annual tree-ring width, annual litterfall and annual nitrogen return and resorption all showed an increasing trend during 2007-2017, and most of the variations were explained by elevated atmospheric CO rather than climate change. Similar patterns were found in the longer time series of tree-ring width index from 1986-2017. The regional representativeness of our observed patterns was confirmed by the literature data of six other tree species at 11 treeline sites over the Tibetan Plateau. Enhanced nitrogen recycling through increased litterfall under elevated atmospheric CO supports a general increasing trend of tree-ring growth in recent decades, especially in cold and nitrogen-poor environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41559-022-01811-1 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.
ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.
View Article and Find Full Text PDFChem Sci
December 2024
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
Intracellular recycling via autophagy is governed by post-translational modifications of the autophagy-related (ATG) proteins. One notable example is ATG4-dependent delipidation of ATG8, a process that plays critical but distinct roles in autophagosome formation in yeast and mammals. Here, we aim to elucidate the specific contribution of this process to autophagosome formation in species representative of evolutionarily distant green plant lineages: unicellular green alga Chlamydomonas reinhardtii, with a relatively simple set of ATG genes, and a vascular plant Arabidopsis thaliana, harboring expanded ATG gene families.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
Colony expansion is important for establishing territories. It is unclear to what extent bacteria can maintain colony expansion under nutrient limitation. Here, we found that Escherichia coli biofilms could maintain steady expansion for an extended period of time under severe phosphorus limitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!