ALBA proteins confer thermotolerance through stabilizing HSF messenger RNAs in cytoplasmic granules.

Nat Plants

State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, China.

Published: July 2022

High temperature is one of the major environmental stresses affecting plant growth and fitness. Heat stress transcription factors (HSFs) play critical roles in regulating the expression of heat-responsive genes. However, how HSFs are regulated remains obscure. Here, we show that ALBA4, ALBA5 and ALBA6, which phase separate into stress granules (SGs) and processing bodies (PBs) under heat stress, directly bind selected messenger RNAs, including HSF mRNAs, and recruit them into SGs and PBs to protect them from degradation under heat stress in Arabidopsis. The alba456 triple mutants, but not single and double mutants, display pleiotropic developmental defects and hypersensitivity to heat stress. Mutations in XRN4, a cytoplasmic 5' to 3' exoribonuclease, can rescue the observed developmental and heat-sensitive phenotypes of alba456 seedlings. Our study reveals a new layer of regulation for HSFs whereby HSF mRNAs are stabilized by redundant action of ALBA proteins in SGs and PBs for plant thermotolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-022-01175-1DOI Listing

Publication Analysis

Top Keywords

heat stress
16
alba proteins
8
messenger rnas
8
hsf mrnas
8
sgs pbs
8
stress
5
proteins confer
4
confer thermotolerance
4
thermotolerance stabilizing
4
stabilizing hsf
4

Similar Publications

With freshwater resources becoming scarce worldwide, mariculture is a promising avenue to sustain aquaculture development, especially by incorporating brackish and saline groundwater (GW) use into fish farming. A 75-day rearing trial was conducted to evaluate fish growth, immune response, overall health, and water quality of Chelon ramada cultured in brackish GW and fed on a basal diet (BD) augmented with rosemary oil (RO) or RO + zymogen forte™ (ZF) as an anti-flatulent. Five treatments were administrated in triplicate: T1: fish-fed BD without additives (control group); T2: fish-fed BD + 0.

View Article and Find Full Text PDF

Biostimulants are an emerging and innovative class of products that may mitigate the adverse effects of extreme heat, but research on their efficacy in fruit crops is limited. This study addressed this knowledge gap by evaluating the performance of three biostimulants, FRUIT ARMOR™, Optysil®, and KelpXpress™ [active ingredients glycine betaine, silicon, and kelp (Ascophyllum nodosum) extract, respectively] applied to three raspberry genotypes exposed to high temperatures (T ≥ 35 °C/day) inside a glasshouse. 'Meeker' consistently maintained high chlorophyll fluorescence (F/F) and photosynthesis under control and biostimulant treatments.

View Article and Find Full Text PDF

RP-HPLC technique was developed and optimized for simultaneous identification and estimation of nirmatrelvir (NIR) and ritonavir (RIT) in their new copackaged tablet. Stability of nirmatrelvir (NIR) was studied after exposure to different five stress conditions; alkali, acid, heat, photo and oxidation degradation. The chromatographic separation was achieved using VDSpher PUR 100 ODS (4.

View Article and Find Full Text PDF

Drought and heat stress significantly limit crop growth and productivity. Their simultaneous occurrence, as often observed in summer crops, leads to larger yield losses. Sorghum is well adapted to dry and hot conditions.

View Article and Find Full Text PDF

Climate change-induced rise in sea surface temperatures has led to an increase in the frequency and severity of coral bleaching events, ultimately leading to the deterioration of coral reefs, globally. However, the reef-building corals have an inherent capacity to acclimatize to thermal stress on pre-exposure to high temperatures by altering their endosymbiotic Symbiodiniaceae community composition towards a thermal tolerant composition. This reorganisation may become an important tool in coral's resilience to rapid environmental change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!