TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars.

Nat Plants

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.

Published: July 2022

Plant development is highly dependent on energy levels. TARGET OF RAPAMYCIN (TOR) activates the proximal root meristem to promote root development in response to photosynthesis-derived sugars during photomorphogenesis in Arabidopsis thaliana. However, the mechanisms of how root tip homeostasis is maintained to ensure proper root cap structure and gravitropism are unknown. PLETHORA (PLT) transcription factors are pivotal for the root apical meristem (RAM) identity by forming gradients, but how PLT gradients are established and maintained, and their roles in COL development are not well known. We demonstrate that endogenous sucrose induces TOPOISOMERASE1α (TOP1α) expression during the skotomorphogenesis-to-photomorphogenesis transition. TOP1α fine-tunes TOR expression in the root tip columella. TOR maintains columella stem cell identity correlating with reduced quiescent centre cell division in a WUSCHEL RELATED HOMEOBOX5-independent manner. Meanwhile, TOR promotes PLT2 expression and phosphorylates and stabilizes PLT2 to maintain its gradient consistent with TOR expression pattern. PLT2 controls cell division and amyloplast formation to regulate columella development and gravitropism. This elaborate mechanism helps maintain root tip homeostasis and gravitropism in response to energy changes during root development.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-022-01179-xDOI Listing

Publication Analysis

Top Keywords

root homeostasis
12
root
9
top1α fine-tunes
8
maintain root
8
root development
8
tor expression
8
cell division
8
development
5
tor
5
fine-tunes tor-plt2
4

Similar Publications

Chewing-Activated TRPV4/PIEZO1--Zn Axes in a Rat Periodontal Complex.

J Dent Res

January 2025

Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, CA, USA.

The upstream mechanobiological pathways that regulate the downstream mineralization rates in periodontal tissues are limitedly understood. Herein, we spatially colocalized and correlated compression and tension strain profiles with the expressions of mechanosensory ion channels (MS-ion) TRPV4 and PIEZO1, biometal zinc, mitochondrial function marker (), cell senescence indicator (), and oxygen status marker hypoxia-inducible factor-1α () in rats fed hard and soft foods. The observed zinc and related cellular homeostasis in vivo were ascertained by TRPV4 and PIEZO1 agonists and antagonists on human periodontal ligament fibroblasts ex vivo.

View Article and Find Full Text PDF

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

PagSND1-B1 Regulates Wood Formation by Influencing Phosphorus Absorption and Distribution in Poplar.

Plant Cell Environ

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.

In natural environments, the growth and development of trees are continuously affected by phosphorus (P) starvation stress. However, the mechanisms through which trees balance stem growth and P distribution remain unknown. This study found that in the woody model species poplar, the P loss in stems is more severe than that in roots and leaves under P starvation conditions, thereby inhibiting stem development and reducing the expression of numerous genes related to wood formation, including PagSND1-B1.

View Article and Find Full Text PDF

Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.

View Article and Find Full Text PDF

Formaldehyde (FA) is a hazardous pollutant causing acute and chronic poisoning in humans. While plants provide a natural method of removing FA pollution, their ability to absorb and degrade FA is limited. To improve the ability of plants to degrade FA, we introduced the E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!