Intrinsic and extrinsic regulators of Aux/IAA protein degradation dynamics.

Trends Biochem Sci

Department of Biology, Duke University, Durham, NC, USA. Electronic address:

Published: October 2022

The plant hormone auxin acts through regulated degradation of Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) proteins to regulate transcriptional events. In this review, we examine the composition and function of each Aux/IAA structural motif. We then focus on recent characterization of Aux/IAA N-terminal disordered regions, formation of secondary structure within these disordered regions, and post-translational modifications (PTMs) that affect Aux/IAA function and stability. We propose how structural variations between Aux/IAA family members may be tuned for differential transcriptional repression and degradation dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464691PMC
http://dx.doi.org/10.1016/j.tibs.2022.06.004DOI Listing

Publication Analysis

Top Keywords

degradation dynamics
8
disordered regions
8
aux/iaa
6
intrinsic extrinsic
4
extrinsic regulators
4
regulators aux/iaa
4
aux/iaa protein
4
protein degradation
4
dynamics plant
4
plant hormone
4

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.

View Article and Find Full Text PDF

Quantifying tear exchange during rigid contact lens wear using corneoscleral profilometry: A proof of concept study.

Ophthalmic Physiol Opt

January 2025

Contact Lens and Visual Optics Laboratory, Optometry and Vision Science, Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia.

Introduction: Tear exchange during contact lens wear is essential for ocular surface integrity, facilitating debris removal, and maintaining corneal metabolism. Fluorophotometry and fluorogram methods are typically used to measure tear exchange, which require hardware modifications to a slit lamp biomicroscope. This manuscript introduces an alternative method using a corneoscleral profilometer, the Eye Surface Profiler (ESP), to quantify tear exchange during corneal and scleral rigid lens wear by assessing fluorescence intensity changes over time.

View Article and Find Full Text PDF

The sulfur-related metabolic status of during infection reveals cytosolic serine hydroxymethyltransferase as a promising antifungal target.

Virulence

December 2025

Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.

Sulfur metabolism is an essential aspect of fungal physiology and pathogenicity. Fungal sulfur metabolism comprises anabolic and catabolic routes that are not well conserved in mammals, therefore is considered a promising source of prospective novel antifungal targets. To gain insight into sulfur-related metabolism during infection, we used a NanoString custom nCounter-TagSet and compared the expression of 68 key metabolic genes in different murine models of invasive pulmonary aspergillosis, at 3 time-points, and under a variety of conditions.

View Article and Find Full Text PDF

The Functional and Structural Succession of Mesic-Grassland Soil Microbiomes Beneath Decomposing Large Herbivore Carcasses.

Environ Microbiol

January 2025

Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.

Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!