Goal-directed behavior crucially relies on our capacity to suppress impulses and predominant behavioral responses. This ability, called inhibitory control, emerges in early childhood with marked improvements between 3 and 4 years. Here, we ask which brain structures are related to the emergence of this critical ability. Using a multimodal approach, we relate the pronounced behavioral improvements in different facets of 3- and 4-year-olds' ( = 37, 20 female) inhibitory control to structural indices of maturation in the developing brain assessed with MRI. Our results show that cortical and subcortical structure of core regions in the adult cognitive control network, including the PFC, thalamus, and the inferior parietal cortices, is associated with early inhibitory functioning in preschool children. Probabilistic tractography revealed an association of frontoparietal (i.e., the superior longitudinal fascicle) and thalamocortical connections with early inhibitory control. Notably, these associations to brain structure were distinct for different facets of early inhibitory control, often referred to as motivational ("hot") and cognitive ("cold") inhibitory control. Our findings thus reveal the structural brain networks and connectivity related to the emergence of this core faculty of human cognition. The capacity to suppress impulses and behavioral responses is crucial for goal-directed behavior. This ability, called inhibitory control, develops between the ages of 3 and 4 years. The factors behind this developmental milestone have been debated intensely for decades; however, the brain structure that underlies the emergence of inhibitory control in early childhood is largely unknown. Here, we relate the pronounced behavioral improvements in inhibitory control between 3 and 4 years with structural brain markers of gray matter and white matter maturation. Using a multimodal approach that combines analyses of cortical surface structure, subcortical structures, and white matter connectivity, our results reveal the structural brain networks and connectivity related to this core faculty of human cognition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374117 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2235-21.2022 | DOI Listing |
Acta Pharm Sin B
December 2024
Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea.
Combination therapy with checkpoint inhibitors blocks inhibitory immune cell signaling and improves clinical responses to anticancer treatments. However, continued development of innovative and controllable delivery systems for immune-stimulating agents is necessary to optimize clinical responses. Herein, we engineered to deliver recombinant granulocyte macrophage colony stimulating factor (GM-CSF) in a controllable manner for combination treatment with a programmed death-ligand 1 (PD-L1) inhibitor.
View Article and Find Full Text PDFCurr Mol Pharmacol
January 2025
Área Académica de Medicina del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México.
Introduction: This work aimed to evaluate the anti-inflammatory and myorelaxant effect of thymol (TM) and carvacrol (CAR) in the pregnant rat uterus. Both compounds exhibit considerable antimicrobial, antispasmodic, and anti-inflammatory effects and due to these properties, they were studied in this in vitro model of premature birth induced by infection.
Method: All uterine tissues were studied in uterine contraction tests to determine the inhibitory effect of TM, CAR (10, 56, 100, 150, and 230 μM), and nifedipine (a calcium channel antagonist) on phasic and tonic contraction induced by electro- and pharmacomechanical stimuli.
Microbiome
January 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.
View Article and Find Full Text PDFAnn Gen Psychiatry
January 2025
Department of Psychiatry and Psychotherapy, Semmelweis University, 1083 Balassa utca 6, Budapest, Hungary.
Background: Increased levels of emotion dysregulation and impulsive behavior are overlapping symptoms in adult Attention-Deficit/Hyperactivity Disorder (aADHD) and Borderline Personality Disorder (BPD), both symptom domains reflecting on inhibitory control, although from different angles. Our aims were to describe their differences in the above conditions, investigate their associations with childhood traumatization, and to explore the potential mediation of emotion dysregulation and impulsivity between childhood traumas and personality functioning.
Methods: Young adults between 18 and 36 years diagnosed with aADHD (n = 100) and BPD (n = 63) were investigated with structured clinical interviews, while age-matched healthy controls (n = 100) were screened for psychiatric disorders.
Sci Rep
January 2025
Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!