Introduction: To evaluate the effect of the cardiac cycle for the coronary artery opening and coronary stenosis at the plaque to determine the phase of measuring maximum diameters required for coronary artery disease (CAD).

Methods: This retrospective study assessed data for 208 consecutive patients who underwent coronary computed tomography angiography (CTA). The cross-sectional area and diameters of the opening of the left main coronary artery (LM), left anterior descending branch (LAD), left circumflex branch (LCX) and right coronary artery (RCA), the stenosis rate of involved vessels were measured in 10 cardiac cycles. And all their dynamic changes were estimated by the linear mixed model. The relationship between stenosis rate and opening orifice were analyzed by monofactorial variance.

Results: The opening parameters and stenosis rate of the four main coronary arteries varied within the cardiac cycle ( < .05). The maximum opening area occurred at the 45%-55% phase; The range of stenosis rate varied approximately 11%-14% and the maximum stenosis rate was at the 65% phase. The degree of vascular stenosis for LM, LAD and LCX were not associated with their corresponding opening diameters, but were positively intercorrelation with each other.

Conclusion: For patients with CAD, the maximum coronary artery stenosis rate were at 65% phase and the maximum value of coronary artery opening were at 45%-55% phase, which were chosen for the appropriate measurement and evaluation by CTA.

Download full-text PDF

Source
http://dx.doi.org/10.1177/02676591221114951DOI Listing

Publication Analysis

Top Keywords

coronary artery
32
stenosis rate
24
coronary
12
cardiac cycle
12
artery
8
artery disease
8
artery opening
8
stenosis
8
main coronary
8
45%-55% phase
8

Similar Publications

Feasibility of on-site CT-FFR analysis on cardiac photon-counting CT in evaluation of hemodynamically significant stenosis in comparison to invasive catheter angiography.

Eur J Radiol

January 2025

Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany. Electronic address:

Objectives: Coronary CT angiography (CCTA) is an excellent tool in ruling out coronary artery disease (CAD) but tends to overestimate especially highly calcified plaques. To reduce diagnostic invasive catheter angiographies (ICA), current guidelines recommend CT-FFR to determine the hemodynamic significance of coronary artery stenosis. Photon-Counting Detector CT (PCCT) revolutionized CCTA and may improve CT-FFR analysis in guiding patients.

View Article and Find Full Text PDF

Aims: To identify differences in CT-derived perivascular (PVAT) and epicardial adipose tissue (EAT) characteristics that may indicate inflammatory status differences between post-treatment acute myocardial infarction (AMI) and stable coronary artery disease (CAD) patients.

Methods And Results: A cohort of 205 post-AMI patients (age 59.8±9.

View Article and Find Full Text PDF

This paper proposes the use of artificial intelligence techniques, specifically the nnU-Net convolutional neural network, to improve the identification of left ventricular walls in images of myocardial perfusion scintigraphy, with the objective of improving the diagnosis and treatment of coronary artery disease. The methodology included data collection in a clinical environment, followed by data preparation and analysis using the 3D Slicer Platform for manual segmentation, and subsequently, the application of artificial intelligence models for automated segmentation, focusing on the efficiency of identifying the walls of the left ventricular. A total of 83 clinical routine exams were collected, each exam containing 50 slices, which is 4,150 images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!