A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultra-HPLC-MS pseudo-targeted metabolomic profiling reveals metabolites and associated metabolic pathway alterations in Asian plum () fruits in response to gummosis disease. | LitMetric

Plum (Prunus spp.) is an economically and nutritionally important stone fruit that is grown worldwide. Gummosis disease (GD) is one of the most common limiting factors that adversely affects the yield and quality of stone fruits such as plum. Elucidating plum fruit metabolomics responses is essential to develop sustainable agricultural practices to combat GD in the future. Herein, an ultra-high-performance liquid chromatography coupled to mass-spectrometry (UHPLC-MS) pseudo-targeted metabolomic profiling was first performed to elucidate the overall metabolic alterations in Asian plum (Prunus salicina Lindl.) fruit in response to GD. The most pivotal differential metabolites, including certain amino acids and proanthocyanidins, in GD and control groups were identified by combining multivariate data analysis with strict statistical criteria. Metabolic pathway enrichment analysis showed that GD induced a series of coordinated defence responses and reprogramming of various metabolic pathways, including glucosinolate biosynthesis, 2-oxocarboxylic acid metabolism, valine, leucine and isoleucine degradation, and isoquinoline alkaloid biosynthesis pathways. Using UHPLC-MS-based pseudo-targeted metabolomic profiling, we systematically evaluated overall metabolic modifications in Asian plum fruits in response to GD for the first time. The identified metabolic pathway alterations helped to better understand the internal relationships and related metabolic networks.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP21168DOI Listing

Publication Analysis

Top Keywords

pseudo-targeted metabolomic
12
metabolomic profiling
12
metabolic pathway
12
asian plum
12
pathway alterations
8
alterations asian
8
plum fruits
8
fruits response
8
gummosis disease
8
plum prunus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!