A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An integrative bioinformatics approach to decipher adipocyte-induced transdifferentiation of osteoblast. | LitMetric

An integrative bioinformatics approach to decipher adipocyte-induced transdifferentiation of osteoblast.

Genomics

Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, France, Univ. Lille F-59000, Marrow Adiposity and Bone Lab - MABLab, ULR 4490 Lille, France. Electronic address:

Published: July 2022

In human, bone loss is associated with increased marrow adipose tissue and recent data suggest that medullary adipocytes could play a role in osteoporosis by acting on neighboring bone-forming osteoblasts. Supporting this hypothesis, we previously showed, in a coculture model based on human bone marrow stromal cells, that factors secreted by adipocytes induced the conversion of osteoblasts towards an adipocyte-like phenotype. In this work, we employed an original integrative bioinformatics approach connecting proteomic and transcriptomic data from adipocytes and osteoblasts, respectively, to investigate the mechanisms underlying their crosstalk. Our analysis identified a total of 271 predicted physical interactions between adipocyte-secreted proteins and osteoblast membrane protein coding genes and proposed three pathways for their potential contribution to osteoblast transdifferentiation, the PI3K-AKT, the JAK2-STAT3 and the SMAD pathways. Our findings demonstrated the effectiveness of our integrative omics strategy to decipher cell-cell communication events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2022.110422DOI Listing

Publication Analysis

Top Keywords

integrative bioinformatics
8
bioinformatics approach
8
human bone
8
approach decipher
4
decipher adipocyte-induced
4
adipocyte-induced transdifferentiation
4
transdifferentiation osteoblast
4
osteoblast human
4
bone loss
4
loss associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!