Due to the inflammatory responses associated with defect occurrence and materials implantation, immunoregulation has emerged as a promising strategy to enhance bone regeneration. It has been widely reported that a material could facilitate osteogenesis if it can guide macrophages to anti-inflammatory M2 phenotype, vice versa, a substrate will influence macrophage phenotype if it is osteoinductive. However, few studies have looked into the intercellular crosstalking directly. Herein, the compound catalpol was selected for its multiple functions to study the interactions between bone marrow mesenchymal stromal cells (BMSCs) and macrophages. This iridoid glucoside exhibits excellent anti-inflammatory and osteoinductive activities. The effects of catalpol on mediating M1/M2 polarization of macrophages, inhibiting osteoclast differentiation, promoting osteogenesis and angiogenesis were systematically investigated to correlate the biological responses of BMSCs and macrophages. To extend its in vivo application, the catalpol was then loaded onto an electrospun polylactide/gelatin composite fibrous mesh and subcutaneously implanted to evaluate the local inflammation and ectopic osteogenesis. The results revealed that the functions of catalpol displayed in modulating cellular behaviors are via cell paracrine to strengthen intercellular crosstalking, hence demonstrating that catalpol itself could serve as a promising bioactive stimulator for bone tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2022.113269 | DOI Listing |
Regen Ther
March 2025
Laboratory of Veterinary Internal Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
Introduction: Intestinal lymphoma may be latent in some dogs with chronic inflammatory enteropathy. Mesenchymal stromal cells (MSCs) have potential therapeutic applications for refractory chronic inflammatory enteropathy, but their impact on the development of potential intestinal lymphomas has not yet been evaluated. Therefore, this study was performed to investigate the effect of canine adipose-derived MSCs (cADSCs) on the growth of canine lymphoma cell lines to assess the safety of MSC-based therapy in terms of pro- and anti-tumorigenic effects.
View Article and Find Full Text PDFPulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome (ARDS), markedly increasing patient mortality. Despite the established anti-fibrotic effects of mesenchymal stem cells (MSCs), numerous challenges hinder their clinical application. A recent study demonstrated that microvesicles (MVs) from MSCs (MSC-MVs) could attenuate ARDS-related pulmonary fibrosis and enhance lung function hepatocyte growth factor mRNA transcription.
View Article and Find Full Text PDFWorld J Stem Cells
January 2025
Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul 06974, South Korea.
Background: Human mesenchymal stromal cells (MSCs) possess regenerative potential due to pluripotency and paracrine functions. However, their stemness and immunomodulatory capabilities are sub-optimal in conventional two-dimensional (2D) culture.
Aim: To enhance the efficiency and therapeutic efficacy of MSCs, an -like 3D culture condition was applied.
Nuclear morphology, which modulates chromatin architecture, plays a critical role in regulating gene expression and cell functions. While most research has focused on the direct effects of nuclear morphology on cell fate, its impact on the cell secretome and surrounding cells remains largely unexplored, yet is especially crucial for cell-based therapies. In this study, we fabricated implants with a micropillar topography using methacrylated poly(octamethylene citrate)/hydroxyapatite (mPOC/HA) composites to investigate how micropillar-induced nuclear deformation influences cell paracrine signaling for osteogenesis and cranial bone regeneration.
View Article and Find Full Text PDFFront Public Health
January 2025
Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China.
Pneumoconiosis is a widespread occupational pulmonary disease caused by inhalation and retention of dust particles in the lungs, is characterized by chronic pulmonary inflammation and progressive fibrosis, potentially leading to respiratory and/or heart failure. Workers exposed to dust, such as coal miners, foundry workers, and construction workers, are at risk of pneumoconiosis. This review synthesizes the international and national classifications, epidemiological characteristics, strategies for prevention, clinical manifestations, diagnosis, pathogenesis, and treatment of pneumoconiosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!