In the present work, the operational conditions for improving the degradation rates of Total Petroleum Hydrocarbons (TPHs) in contaminated soil from a machinery park were optimized at a microcosms scale along a 90-days incubation period. In this study, bioremediation strategies and an organic amendment have been tested to verify the remediation of soil contaminated with different hydrocarbons, mineral oils, and heavy metals. Specifically, designed biostimulation and bioaugmentation strategies were compared with and without adding vermicompost. The polluted soil harboring multiple contaminants, partially attenuated for years, was used. The initial profile showed enrichment in heavy linear alkanes, suggesting a previous moderate weathering. The application of vermicompost increased five and two times the amounts of available phosphorus (P) and exchangeable potassium (K), respectively, as a direct consequence of the organic amendment addition. The microbial activity increased due to soil acidification, which influenced the solubility of P and other micronutrients. It also impacted the predominance and variability of the different microbial groups and the incubation, as reflected by phospholipid fatty acid (PLFA) results. An increase in the alkaline phosphatases and proteases linked to bacterial growth was displayed. This stimulation of microbial metabolism correlated with the degradation rates since TPHs degradation' efficiency after vermicompost addition reached 32.5% and 34.4% of the initial hydrocarbon levels for biostimulation and bioaugmentation, respectively. Although Polycyclic Aromatic Hydrocarbons (PAHs) were less abundant in this soil, results also decreased, especially for the most abundant, the phenanthrene. Despite improving the degradation rates, results revealed that recalcitrant and hydrophobic petroleum compounds remained unchanged, indicating that mobility, linked to bioavailability, probably represents the limiting step for further soil recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.135638 | DOI Listing |
Biodegradation
January 2025
Civil and Environmental Engineering, Duke University, Hudson Hall 121, Box 90287, Durham, NC, 27708, USA.
Mycoremediation is a biological treatment approach that relies on fungi to transform environmental pollutants into intermediates with lower environmental burden. Basidiomycetes have commonly been used as the target fungal phylum for bioaugmentation in mycoremediation, however this phylum has been found to be unreliable when used at scale in the field. In this study, we isolated, characterized, and identified potential polycyclic aromatic hydrocarbon (PAH) degrading fungal isolates from creosote-contaminated sediment in the Elizabeth River, Virginia.
View Article and Find Full Text PDFMar Environ Res
December 2024
University of Manitoba, Winnipeg, MB, Canada.
Petroleum-derived contamination is a growing hazard for the Arctic Ocean and northern marine transportation corridors. In northern settings where the accessibility to oil spills can be limited, natural attenuation is the most promising remediation process. The goal of the presented research is to evaluate the impact of biodegradation on crude oil inside sea ice.
View Article and Find Full Text PDFWater Res
February 2025
School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou, 510006, China. Electronic address:
Anaerobic membrane bioreactor (AnMBR) is a promising technology for resource and energy recovery from wastewater owing to its high-quality effluent and methane production. However, membrane fouling and susceptible methanogenesis have ever compromised the AnMBR. This work attempted to mitigate membrane fouling and promote methane production simultaneously in AnMBR through bioaugmentation with a consortium consisting of both quorum quenching (QQ) bacteria and methanogens.
View Article and Find Full Text PDFSci Rep
October 2024
Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), ARISE, Department of Life Sciences, Universidade de Coimbra, 3000-456, Coimbra, Portugal.
Mine waste can be transformed into technosol as an ecological strategy. Despite its importance to soil functions, biological activity is often overlooked. Biopolymers can serve as innovative tools for bioremediation, facilitating chemical reactions and creating networks to encapsulate contaminants.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2024
Key Laboratory of Environmental Engineering of Shaanxi Province, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
Petroleum contamination remains a worldwide issue requiring cost-effective bioremediation techniques. However, establishing a universal bioremediation strategy for all types of oil-polluted sites is challenging. This difficulty arises from the heterogeneity of soil textures, the complexity of oil products, and the variations in local climate and environment across different oil-contaminated regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!