Anaerobic methane oxidation coupled to ferrihydrite reduction by Methanosarcina barkeri.

Sci Total Environ

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China. Electronic address:

Published: October 2022

Fe(III) has been recognized as a potential electron sink for the anaerobic oxidation of methane (Fe-AOM) in diverse environments. However, most of previous Fe-AOM processes are limited to ANME archaea and the Fe-AOM mechanism remains unclear. Here we investigate, for the first time, the Fe-AOM performance and mechanisms by a single methanogen Methanosarcina barkeri. The results showed that M. barkeri was capable of oxidizing methane to CO and reducing ferrihydrite to siderite simultaneously. The presence of methane enhanced both the abundances of redox-active species (such as cytochromes) and electrochemical activity of M. barkeri. The proteomic analyses revealed that M. barkeri up-regulated the expressions of a number of methanogenic enzymes during Fe-AOM, and significantly enriched metabolic pathways of amino acid synthesis and nitrogen fixation. Metabolic inhibition experiments indicated that membrane-bound redox-active components (cytochromes, methanophenazine and FH:quinone oxidoreductase) were probably involved in extracellular electron transfer (EET) from cells to ferrihydrite. Overall, these results provide a deep insight into the single‑carbon metabolism and survival strategy for methanogens and suggest that methanogens may play an important role in linking methane and iron cycling in the substrate-limited environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.157235DOI Listing

Publication Analysis

Top Keywords

methanosarcina barkeri
8
barkeri
5
fe-aom
5
anaerobic methane
4
methane oxidation
4
oxidation coupled
4
coupled ferrihydrite
4
ferrihydrite reduction
4
reduction methanosarcina
4
barkeri feiii
4

Similar Publications

Hydrogenotrophic methanogenesis at 7-12 mbar by Methanosarcina barkeri under simulated martian atmospheric conditions.

Sci Rep

January 2025

Department of Plant Pathology, Space Life Sciences Lab, University of Florida, 505 Odyssey Way, Exploration Park,, Merritt Island, FL, 32953, USA.

Mars, with its ancient history of long-lived habitable environments, continues to captivate researchers exploring the potential for extant life. This study investigates the biosignature potential of Martian methane by assessing the viability of hydrogenotrophic methanogenesis in Methanosarcina barkeri MS under simulated Martian surface conditions. We expose M.

View Article and Find Full Text PDF

Liquid Metal Nanobiohybrids for High-Performance Solar-Driven Methanogenesis via Multi-Interface Engineering.

Angew Chem Int Ed Engl

January 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.

Nanobiohybrids for solar-driven methanogenesis present a promising solution to the global energy crisis. However, conventional semiconductor-based nanobiohybrids face challenges such as limited tunability and poor biocompatibility, leading to undesirable spontaneous electron and proton transfer that compromise their structural stability and CH selectivity. Herein, we introduced eutectic gallium-indium alloys (EGaIn), featuring a self-limiting surface oxide layer surrounding the liquid metal core after sonication, integrated with Methanosarcina barkeri (M.

View Article and Find Full Text PDF

Evolutionary Transitions of DNA Replication Origins Between Archaea and Bacteria.

J Basic Microbiol

December 2024

Department of Bioinformatics, Industrial Systems Biology Lab, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.

Article Synopsis
  • The study explores the evolutionary transitions of DNA replication origins between archaea and bacteria, analyzing thousands of genomes from both groups.
  • Findings indicate that certain methanogens and bacteria, particularly those found in the human gut, share evolutionary links, highlighting interactions across different ecosystems.
  • The research may have important applications in biotechnology and medicine, particularly in developing new antimicrobial strategies and understanding the dynamics between hosts and pathogens.
View Article and Find Full Text PDF

Existing researches involving accelerated interspecies electron transfer (IET) by solid redox mediators focus mainly on the conductive nature of these materials. Although non-conductive solid redox mediator-humin has been reported to promote methanogenic performance of anaerobic granular sludge, likely through accelerating IET of microorganisms, this phenomenon has not been validly proven. In this study, a wetland sediment sourced HM (HM) was added into a co-culture of a syntrophic bacteria Shewanella oneidensis MR-1 and an archaeal Methanosarcina barkeri with ethanol as sole electron donor to examine whether HM can accelerate the IET between these two species.

View Article and Find Full Text PDF

Enrichment of Methanothrix species via riboflavin-loaded granular activated carbon in anaerobic digestion of high-concentration brewery wastewater amidst continuous inoculation of Methanosarcina barkeri.

Water Res

January 2025

Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China. Electronic address:

Effective treatment of high-concentration brewery wastewater through anaerobic digestion (AD) has always been a challenging issue. Enhancing direct interspecies electron transfer (DIET) was demonstrated to increase methane production during AD under high organic loading rate (OLR). Herein, the feasibility of enhancing DIET with the addition of riboflavin-loaded granular activated carbon (RF-GAC) as well as co-addition with Methanosarcina barkeri (Rf-GAC+M.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!